Loading…

Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites

The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2005-01, Vol.15 (1), p.95-100
Main Authors: Nanu, M., Schoonman, J., Goossens, A.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 100
container_issue 1
container_start_page 95
container_title Advanced functional materials
container_volume 15
creator Nanu, M.
Schoonman, J.
Goossens, A.
description The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D) solar‐cell concept. Atomic layer chemical vapor deposition is employed for infiltration of CuInS2 inside the pores of nanostructured TiO2. In this way it is possible to obtain a nanometer‐scale interpenetrating network between n‐type TiO2 and p‐type CuInS2. X‐ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, and current–voltage measurements are used to characterize the nanostructured devices. The 3D solar cells obtained show photovoltaic activity with a maximum monochromatic incident photon‐to‐current conversion efficiency of 80 % and have an energy‐conversion efficiency of 4 %. The three‐dimensional‐solar‐cell concept is explored using a new approach. A nanocomposite consisting of a wide‐bandgap n‐type semiconducting oxide (nanocrystalline TiO2) and a p‐type visible‐light‐sensitive semiconductor (CuInS2), mixed on a nanometer scale (see Figure), is used as the active material.
doi_str_mv 10.1002/adfm.200400150
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_29446832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29446832</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3400-a309b75acc9b5f44ca1bf7fbdd8d9e114cf7648b547185a30e9b6e244eb7f0ae3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EEqWwMmdiS3v-SByPVfpBpdIOLSqb5SQOMiRxsVsg_55URZnuPel5T6cHoUcMIwxAxqoo6xEBYAA4gis0wDGOQwokue4zfrtFd95_dAjnlA1QtLWVcuGs0e69DVLbfGvnjW0C0wQ7syHj9LRstiRYq8bmtj5Yb47a36ObUlVeP_zPIXqdz3bpc7jaLJbpZBUa2n0RKgoi45HKc5FFJWO5wlnJy6wokkJojFle8pglWcQ4TqKO1iKLNWFMZ7wEpekQPV3uHpz9Oml_lLXxua4q1Wh78pIIxuKEkg4UF_DHVLqVB2dq5VqJQZ7VyLMa2auRk-n8pd-6bnjpGn_Uv31XuU8Zc8ojuV8v5FRs92sgVAL9A3P9aIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29446832</pqid></control><display><type>article</type><title>Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Nanu, M. ; Schoonman, J. ; Goossens, A.</creator><creatorcontrib>Nanu, M. ; Schoonman, J. ; Goossens, A.</creatorcontrib><description>The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D) solar‐cell concept. Atomic layer chemical vapor deposition is employed for infiltration of CuInS2 inside the pores of nanostructured TiO2. In this way it is possible to obtain a nanometer‐scale interpenetrating network between n‐type TiO2 and p‐type CuInS2. X‐ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, and current–voltage measurements are used to characterize the nanostructured devices. The 3D solar cells obtained show photovoltaic activity with a maximum monochromatic incident photon‐to‐current conversion efficiency of 80 % and have an energy‐conversion efficiency of 4 %. The three‐dimensional‐solar‐cell concept is explored using a new approach. A nanocomposite consisting of a wide‐bandgap n‐type semiconducting oxide (nanocrystalline TiO2) and a p‐type visible‐light‐sensitive semiconductor (CuInS2), mixed on a nanometer scale (see Figure), is used as the active material.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200400150</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Composite materials ; Heterojunction ; inorganic ; Nanostructured materials ; Solar cells ; Solar cells, inorganic ; Titania</subject><ispartof>Advanced functional materials, 2005-01, Vol.15 (1), p.95-100</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nanu, M.</creatorcontrib><creatorcontrib>Schoonman, J.</creatorcontrib><creatorcontrib>Goossens, A.</creatorcontrib><title>Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D) solar‐cell concept. Atomic layer chemical vapor deposition is employed for infiltration of CuInS2 inside the pores of nanostructured TiO2. In this way it is possible to obtain a nanometer‐scale interpenetrating network between n‐type TiO2 and p‐type CuInS2. X‐ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, and current–voltage measurements are used to characterize the nanostructured devices. The 3D solar cells obtained show photovoltaic activity with a maximum monochromatic incident photon‐to‐current conversion efficiency of 80 % and have an energy‐conversion efficiency of 4 %. The three‐dimensional‐solar‐cell concept is explored using a new approach. A nanocomposite consisting of a wide‐bandgap n‐type semiconducting oxide (nanocrystalline TiO2) and a p‐type visible‐light‐sensitive semiconductor (CuInS2), mixed on a nanometer scale (see Figure), is used as the active material.</description><subject>Composite materials</subject><subject>Heterojunction</subject><subject>inorganic</subject><subject>Nanostructured materials</subject><subject>Solar cells</subject><subject>Solar cells, inorganic</subject><subject>Titania</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EEqWwMmdiS3v-SByPVfpBpdIOLSqb5SQOMiRxsVsg_55URZnuPel5T6cHoUcMIwxAxqoo6xEBYAA4gis0wDGOQwokue4zfrtFd95_dAjnlA1QtLWVcuGs0e69DVLbfGvnjW0C0wQ7syHj9LRstiRYq8bmtj5Yb47a36ObUlVeP_zPIXqdz3bpc7jaLJbpZBUa2n0RKgoi45HKc5FFJWO5wlnJy6wokkJojFle8pglWcQ4TqKO1iKLNWFMZ7wEpekQPV3uHpz9Oml_lLXxua4q1Wh78pIIxuKEkg4UF_DHVLqVB2dq5VqJQZ7VyLMa2auRk-n8pd-6bnjpGn_Uv31XuU8Zc8ojuV8v5FRs92sgVAL9A3P9aIU</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Nanu, M.</creator><creator>Schoonman, J.</creator><creator>Goossens, A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200501</creationdate><title>Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites</title><author>Nanu, M. ; Schoonman, J. ; Goossens, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3400-a309b75acc9b5f44ca1bf7fbdd8d9e114cf7648b547185a30e9b6e244eb7f0ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Composite materials</topic><topic>Heterojunction</topic><topic>inorganic</topic><topic>Nanostructured materials</topic><topic>Solar cells</topic><topic>Solar cells, inorganic</topic><topic>Titania</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nanu, M.</creatorcontrib><creatorcontrib>Schoonman, J.</creatorcontrib><creatorcontrib>Goossens, A.</creatorcontrib><collection>Istex</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nanu, M.</au><au>Schoonman, J.</au><au>Goossens, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2005-01</date><risdate>2005</risdate><volume>15</volume><issue>1</issue><spage>95</spage><epage>100</epage><pages>95-100</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D) solar‐cell concept. Atomic layer chemical vapor deposition is employed for infiltration of CuInS2 inside the pores of nanostructured TiO2. In this way it is possible to obtain a nanometer‐scale interpenetrating network between n‐type TiO2 and p‐type CuInS2. X‐ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, and current–voltage measurements are used to characterize the nanostructured devices. The 3D solar cells obtained show photovoltaic activity with a maximum monochromatic incident photon‐to‐current conversion efficiency of 80 % and have an energy‐conversion efficiency of 4 %. The three‐dimensional‐solar‐cell concept is explored using a new approach. A nanocomposite consisting of a wide‐bandgap n‐type semiconducting oxide (nanocrystalline TiO2) and a p‐type visible‐light‐sensitive semiconductor (CuInS2), mixed on a nanometer scale (see Figure), is used as the active material.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200400150</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2005-01, Vol.15 (1), p.95-100
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_29446832
source Wiley-Blackwell Read & Publish Collection
subjects Composite materials
Heterojunction
inorganic
Nanostructured materials
Solar cells
Solar cells, inorganic
Titania
title Solar-Energy Conversion in TiO2/CuInS2 Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A15%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar-Energy%20Conversion%20in%20TiO2/CuInS2%20Nanocomposites&rft.jtitle=Advanced%20functional%20materials&rft.au=Nanu,%20M.&rft.date=2005-01&rft.volume=15&rft.issue=1&rft.spage=95&rft.epage=100&rft.pages=95-100&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200400150&rft_dat=%3Cproquest_wiley%3E29446832%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3400-a309b75acc9b5f44ca1bf7fbdd8d9e114cf7648b547185a30e9b6e244eb7f0ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29446832&rft_id=info:pmid/&rfr_iscdi=true