Loading…
An analytical study of linear and non-linear double diffusive convection with Soret effect in couple stress liquids
The double diffusive convection in a two-component couple stress liquid layer with Soret effect is studied using both linear and non-linear stability analyses. The linear theory is based on normal mode technique and the non-linear analysis is based on a minimal representation of double Fourier serie...
Saved in:
Published in: | International journal of thermal sciences 2006-09, Vol.45 (9), p.897-907 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The double diffusive convection in a two-component couple stress liquid layer with Soret effect is studied using both linear and non-linear stability analyses. The linear theory is based on normal mode technique and the non-linear analysis is based on a minimal representation of double Fourier series. The effect of couple stress parameter, the Soret parameter, the solute Rayleigh number, the Prandtl number and the diffusivity ratio on the stationary, oscillatory and finite amplitude convection are shown graphically. It is found that the effects of couple stress are quite large and the positive Soret number enhances the stability while the negative Soret number enhances the instability. The non-linear theory predicts that, finite amplitude motions are possible only for negative Soret parameter. The transient behaviour of thermal and solute Nusselt numbers has been investigated by solving numerically a fifth order Lorenz model using Runge–Kutta method. |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/j.ijthermalsci.2005.12.005 |