Loading…

Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires

This paper reports the synthesis of tetragonal zirconia nanowires using template method. An as‐prepared sample was characterized by scanning and transmission electron microscopy. It was found that the as‐prepared materials were tetragonal zirconia nanowires with average diameters of ca. 80 nm and le...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2004-03, Vol.14 (3), p.243-246
Main Authors: Cao, H. Q., Qiu, X. Q., Luo, B., Liang, Y., Zhang, Y. H., Tan, R. Q., Zhao, M. J., Zhu, Q. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993
cites cdi_FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993
container_end_page 246
container_issue 3
container_start_page 243
container_title Advanced functional materials
container_volume 14
creator Cao, H. Q.
Qiu, X. Q.
Luo, B.
Liang, Y.
Zhang, Y. H.
Tan, R. Q.
Zhao, M. J.
Zhu, Q. M.
description This paper reports the synthesis of tetragonal zirconia nanowires using template method. An as‐prepared sample was characterized by scanning and transmission electron microscopy. It was found that the as‐prepared materials were tetragonal zirconia nanowires with average diameters of ca. 80 nm and length of over 10 μm. The Raman spectrum showed peaks at 120, 461, and 629 cm–1, which are attributed to the Eg, Eg, and B1g phonon modes of the tetragonal zirconia structure, respectively. The UV‐vis absorption spectrum showed an absorption peak at 232.5 nm (5.33 eV in photon energy). Photoluminescence (PL) spectra of zirconia nanowires showed a strong emission peak at ca. 388 nm at room temperature, which is attributed to the ionized oxygen vacancy in the zirconia nanowires system. Zirconia nanowires (see Figure) have been synthesized using a sol–gel template method in three steps: synthesis of the hydrated zirconyl oxalate (ZrOC2O4) sol, dipping the alumina template in the sol, and heat treatment of the resulting ZrOC2O4 composite. The as‐prepared materials are tetragonal zirconia single‐crystalline nanowires with an average diameter of ∼ 80 nm and a length of over 10 μm.
doi_str_mv 10.1002/adfm.200305033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29454670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29454670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993</originalsourceid><addsrcrecordid>eNqFkE1PwkAQQBujiYhePffkrbgfbZc9IgpIEIlCNCZmM3anYbXt4m4R-fdCMMSbp5nDe5PJC4JzSlqUEHYJOi9bjBBOEsL5QdCgKU0jTlj7cL_T5-PgxPt3QqgQPG4Er4_rqp6jNz6ESocP1pbRFMsFOqiXDsNZUTv4MrbAOpzMbW2LZWkq9BlWGYYTZzdkbdCHNg9fjMtsZSAcQ2VXxqE_DY5yKDye_c5mMOvdTLuDaHTfv-12RlHGueARTYDGgknUOs4BdJoLQJaxJNESEdKYC0ikjAUBRnOBic5AvsWQsbbmWkreDC52dxfOfi7R16o0mxeLAiq0S6-YjJM4FWQDtnZg5qz3DnO1cKYEt1aUqG1Fta2o9hU3gtwJK1Pg-h9ada57d3_daOcaX-P33gX3oVLBRaKexn3VH14NxxM5UJz_AFKFiDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29454670</pqid></control><display><type>article</type><title>Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Cao, H. Q. ; Qiu, X. Q. ; Luo, B. ; Liang, Y. ; Zhang, Y. H. ; Tan, R. Q. ; Zhao, M. J. ; Zhu, Q. M.</creator><creatorcontrib>Cao, H. Q. ; Qiu, X. Q. ; Luo, B. ; Liang, Y. ; Zhang, Y. H. ; Tan, R. Q. ; Zhao, M. J. ; Zhu, Q. M.</creatorcontrib><description>This paper reports the synthesis of tetragonal zirconia nanowires using template method. An as‐prepared sample was characterized by scanning and transmission electron microscopy. It was found that the as‐prepared materials were tetragonal zirconia nanowires with average diameters of ca. 80 nm and length of over 10 μm. The Raman spectrum showed peaks at 120, 461, and 629 cm–1, which are attributed to the Eg, Eg, and B1g phonon modes of the tetragonal zirconia structure, respectively. The UV‐vis absorption spectrum showed an absorption peak at 232.5 nm (5.33 eV in photon energy). Photoluminescence (PL) spectra of zirconia nanowires showed a strong emission peak at ca. 388 nm at room temperature, which is attributed to the ionized oxygen vacancy in the zirconia nanowires system. Zirconia nanowires (see Figure) have been synthesized using a sol–gel template method in three steps: synthesis of the hydrated zirconyl oxalate (ZrOC2O4) sol, dipping the alumina template in the sol, and heat treatment of the resulting ZrOC2O4 composite. The as‐prepared materials are tetragonal zirconia single‐crystalline nanowires with an average diameter of ∼ 80 nm and a length of over 10 μm.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.200305033</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Nanowires ; Photoluminescence ; Template-directed synthesis ; Zirconia</subject><ispartof>Advanced functional materials, 2004-03, Vol.14 (3), p.243-246</ispartof><rights>Copyright © 2004 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993</citedby><cites>FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cao, H. Q.</creatorcontrib><creatorcontrib>Qiu, X. Q.</creatorcontrib><creatorcontrib>Luo, B.</creatorcontrib><creatorcontrib>Liang, Y.</creatorcontrib><creatorcontrib>Zhang, Y. H.</creatorcontrib><creatorcontrib>Tan, R. Q.</creatorcontrib><creatorcontrib>Zhao, M. J.</creatorcontrib><creatorcontrib>Zhu, Q. M.</creatorcontrib><title>Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires</title><title>Advanced functional materials</title><addtitle>Adv. Funct. Mater</addtitle><description>This paper reports the synthesis of tetragonal zirconia nanowires using template method. An as‐prepared sample was characterized by scanning and transmission electron microscopy. It was found that the as‐prepared materials were tetragonal zirconia nanowires with average diameters of ca. 80 nm and length of over 10 μm. The Raman spectrum showed peaks at 120, 461, and 629 cm–1, which are attributed to the Eg, Eg, and B1g phonon modes of the tetragonal zirconia structure, respectively. The UV‐vis absorption spectrum showed an absorption peak at 232.5 nm (5.33 eV in photon energy). Photoluminescence (PL) spectra of zirconia nanowires showed a strong emission peak at ca. 388 nm at room temperature, which is attributed to the ionized oxygen vacancy in the zirconia nanowires system. Zirconia nanowires (see Figure) have been synthesized using a sol–gel template method in three steps: synthesis of the hydrated zirconyl oxalate (ZrOC2O4) sol, dipping the alumina template in the sol, and heat treatment of the resulting ZrOC2O4 composite. The as‐prepared materials are tetragonal zirconia single‐crystalline nanowires with an average diameter of ∼ 80 nm and a length of over 10 μm.</description><subject>Nanowires</subject><subject>Photoluminescence</subject><subject>Template-directed synthesis</subject><subject>Zirconia</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQQBujiYhePffkrbgfbZc9IgpIEIlCNCZmM3anYbXt4m4R-fdCMMSbp5nDe5PJC4JzSlqUEHYJOi9bjBBOEsL5QdCgKU0jTlj7cL_T5-PgxPt3QqgQPG4Er4_rqp6jNz6ESocP1pbRFMsFOqiXDsNZUTv4MrbAOpzMbW2LZWkq9BlWGYYTZzdkbdCHNg9fjMtsZSAcQ2VXxqE_DY5yKDye_c5mMOvdTLuDaHTfv-12RlHGueARTYDGgknUOs4BdJoLQJaxJNESEdKYC0ikjAUBRnOBic5AvsWQsbbmWkreDC52dxfOfi7R16o0mxeLAiq0S6-YjJM4FWQDtnZg5qz3DnO1cKYEt1aUqG1Fta2o9hU3gtwJK1Pg-h9ada57d3_daOcaX-P33gX3oVLBRaKexn3VH14NxxM5UJz_AFKFiDE</recordid><startdate>200403</startdate><enddate>200403</enddate><creator>Cao, H. Q.</creator><creator>Qiu, X. Q.</creator><creator>Luo, B.</creator><creator>Liang, Y.</creator><creator>Zhang, Y. H.</creator><creator>Tan, R. Q.</creator><creator>Zhao, M. J.</creator><creator>Zhu, Q. M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>200403</creationdate><title>Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires</title><author>Cao, H. Q. ; Qiu, X. Q. ; Luo, B. ; Liang, Y. ; Zhang, Y. H. ; Tan, R. Q. ; Zhao, M. J. ; Zhu, Q. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Nanowires</topic><topic>Photoluminescence</topic><topic>Template-directed synthesis</topic><topic>Zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, H. Q.</creatorcontrib><creatorcontrib>Qiu, X. Q.</creatorcontrib><creatorcontrib>Luo, B.</creatorcontrib><creatorcontrib>Liang, Y.</creatorcontrib><creatorcontrib>Zhang, Y. H.</creatorcontrib><creatorcontrib>Tan, R. Q.</creatorcontrib><creatorcontrib>Zhao, M. J.</creatorcontrib><creatorcontrib>Zhu, Q. M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, H. Q.</au><au>Qiu, X. Q.</au><au>Luo, B.</au><au>Liang, Y.</au><au>Zhang, Y. H.</au><au>Tan, R. Q.</au><au>Zhao, M. J.</au><au>Zhu, Q. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires</atitle><jtitle>Advanced functional materials</jtitle><addtitle>Adv. Funct. Mater</addtitle><date>2004-03</date><risdate>2004</risdate><volume>14</volume><issue>3</issue><spage>243</spage><epage>246</epage><pages>243-246</pages><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>This paper reports the synthesis of tetragonal zirconia nanowires using template method. An as‐prepared sample was characterized by scanning and transmission electron microscopy. It was found that the as‐prepared materials were tetragonal zirconia nanowires with average diameters of ca. 80 nm and length of over 10 μm. The Raman spectrum showed peaks at 120, 461, and 629 cm–1, which are attributed to the Eg, Eg, and B1g phonon modes of the tetragonal zirconia structure, respectively. The UV‐vis absorption spectrum showed an absorption peak at 232.5 nm (5.33 eV in photon energy). Photoluminescence (PL) spectra of zirconia nanowires showed a strong emission peak at ca. 388 nm at room temperature, which is attributed to the ionized oxygen vacancy in the zirconia nanowires system. Zirconia nanowires (see Figure) have been synthesized using a sol–gel template method in three steps: synthesis of the hydrated zirconyl oxalate (ZrOC2O4) sol, dipping the alumina template in the sol, and heat treatment of the resulting ZrOC2O4 composite. The as‐prepared materials are tetragonal zirconia single‐crystalline nanowires with an average diameter of ∼ 80 nm and a length of over 10 μm.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/adfm.200305033</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2004-03, Vol.14 (3), p.243-246
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_miscellaneous_29454670
source Wiley-Blackwell Read & Publish Collection
subjects Nanowires
Photoluminescence
Template-directed synthesis
Zirconia
title Synthesis and Room-Temperature Ultraviolet Photoluminescence Properties of Zirconia Nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Room-Temperature%20Ultraviolet%20Photoluminescence%20Properties%20of%20Zirconia%20Nanowires&rft.jtitle=Advanced%20functional%20materials&rft.au=Cao,%20H.%E2%80%89Q.&rft.date=2004-03&rft.volume=14&rft.issue=3&rft.spage=243&rft.epage=246&rft.pages=243-246&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.200305033&rft_dat=%3Cproquest_cross%3E29454670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3373-15a14729edd4faad6f7ae2c255d9eea6437a599470a21f7e5dca9b4ac28d3d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29454670&rft_id=info:pmid/&rfr_iscdi=true