Loading…
Spatial indexing of high-dimensional data based on relative approximation
We propose a novel index structure, the A-tree (approximation tree), for similarity searches in high-dimensional data. The basic idea of the A-tree is the introduction of virtual bounding rectangles (VBRs) which contain and approximate MBRs or data objects. VBRs can be represented quite compactly an...
Saved in:
Published in: | The VLDB journal 2002-10, Vol.11 (2), p.93-108 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-1db8388baf5429f0ec37b1c0718a589b5c3590f166baaaa14b79418af3082c6b3 |
---|---|
cites | |
container_end_page | 108 |
container_issue | 2 |
container_start_page | 93 |
container_title | The VLDB journal |
container_volume | 11 |
creator | SAKURAI, Yasushi YOSHIKAWA, Masatoshi UEMURA, Shunsuke KOJIMA, Haruhiko |
description | We propose a novel index structure, the A-tree (approximation tree), for similarity searches in high-dimensional data. The basic idea of the A-tree is the introduction of virtual bounding rectangles (VBRs) which contain and approximate MBRs or data objects. VBRs can be represented quite compactly and thus affect the tree configuration both quantitatively and qualitatively. First, since tree nodes can contain a large number of VBR entries, fanout becomes large, which increases search speed. More importantly, we have a free hand in arranging MBRs and VBRs in the tree nodes. Each A-tree node contains an MBR and its children VBRs. Therefore, by fetching an A-tree node, we can obtain information on the exact position of a parent MBR and the approximate position of its children. We have performed experiments using both synthetic and real data sets. For the real data sets, the A-tree outperforms the SR-tree and the VA-file in all dimensionalities up to 64 dimensions, which is the highest dimension in our experiments. Additionally, we propose a cost model for the A-tree. We verify the validity of the cost model for synthetic and real data sets. |
doi_str_mv | 10.1007/s00778-002-0066-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29455039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29455039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-1db8388baf5429f0ec37b1c0718a589b5c3590f166baaaa14b79418af3082c6b3</originalsourceid><addsrcrecordid>eNpFUE1PAyEQJUYTa_UHeOOit1VYdhc4msaPJk08qIk3Aiy0mC27wtbUf-9s2sRJmAkz7w2Ph9A1JXeUEH6fIXFREFLCaZpCnqAZkZUsBOefp2hGp6aAOEcXOX8RAJZlPUPLt0GPQXc4xNbtQ1zj3uNNWG-KNmxdzKGPMGz1qLHR2bW4jzi5Djg_DuthSP0-bOHWx0t05nWX3dWxztHH0-P74qVYvT4vFw-rwjIpx4K2RjAhjPZ1VUpPnGXcUEs4FboW0tSW1ZJ42jRGQ9DKcFnBzDMiStsYNke3h73w9vfO5VFtQ7au63R0_S6rUlZ1TZgEID0AbepzTs6rIYHW9KsoUZNp6mCaAi_UZJqaODfH5Tpb3fmkow35nwhfYKCS_QHq0mz7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29455039</pqid></control><display><type>article</type><title>Spatial indexing of high-dimensional data based on relative approximation</title><source>Springer Nature</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>SAKURAI, Yasushi ; YOSHIKAWA, Masatoshi ; UEMURA, Shunsuke ; KOJIMA, Haruhiko</creator><creatorcontrib>SAKURAI, Yasushi ; YOSHIKAWA, Masatoshi ; UEMURA, Shunsuke ; KOJIMA, Haruhiko</creatorcontrib><description>We propose a novel index structure, the A-tree (approximation tree), for similarity searches in high-dimensional data. The basic idea of the A-tree is the introduction of virtual bounding rectangles (VBRs) which contain and approximate MBRs or data objects. VBRs can be represented quite compactly and thus affect the tree configuration both quantitatively and qualitatively. First, since tree nodes can contain a large number of VBR entries, fanout becomes large, which increases search speed. More importantly, we have a free hand in arranging MBRs and VBRs in the tree nodes. Each A-tree node contains an MBR and its children VBRs. Therefore, by fetching an A-tree node, we can obtain information on the exact position of a parent MBR and the approximate position of its children. We have performed experiments using both synthetic and real data sets. For the real data sets, the A-tree outperforms the SR-tree and the VA-file in all dimensionalities up to 64 dimensions, which is the highest dimension in our experiments. Additionally, we propose a cost model for the A-tree. We verify the validity of the cost model for synthetic and real data sets.</description><identifier>ISSN: 1066-8888</identifier><identifier>EISSN: 0949-877X</identifier><identifier>DOI: 10.1007/s00778-002-0066-9</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Exact sciences and technology ; Information systems. Data bases ; Memory organisation. Data processing ; Software</subject><ispartof>The VLDB journal, 2002-10, Vol.11 (2), p.93-108</ispartof><rights>2003 INIST-CNRS</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-1db8388baf5429f0ec37b1c0718a589b5c3590f166baaaa14b79418af3082c6b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13993589$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>SAKURAI, Yasushi</creatorcontrib><creatorcontrib>YOSHIKAWA, Masatoshi</creatorcontrib><creatorcontrib>UEMURA, Shunsuke</creatorcontrib><creatorcontrib>KOJIMA, Haruhiko</creatorcontrib><title>Spatial indexing of high-dimensional data based on relative approximation</title><title>The VLDB journal</title><description>We propose a novel index structure, the A-tree (approximation tree), for similarity searches in high-dimensional data. The basic idea of the A-tree is the introduction of virtual bounding rectangles (VBRs) which contain and approximate MBRs or data objects. VBRs can be represented quite compactly and thus affect the tree configuration both quantitatively and qualitatively. First, since tree nodes can contain a large number of VBR entries, fanout becomes large, which increases search speed. More importantly, we have a free hand in arranging MBRs and VBRs in the tree nodes. Each A-tree node contains an MBR and its children VBRs. Therefore, by fetching an A-tree node, we can obtain information on the exact position of a parent MBR and the approximate position of its children. We have performed experiments using both synthetic and real data sets. For the real data sets, the A-tree outperforms the SR-tree and the VA-file in all dimensionalities up to 64 dimensions, which is the highest dimension in our experiments. Additionally, we propose a cost model for the A-tree. We verify the validity of the cost model for synthetic and real data sets.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Information systems. Data bases</subject><subject>Memory organisation. Data processing</subject><subject>Software</subject><issn>1066-8888</issn><issn>0949-877X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpFUE1PAyEQJUYTa_UHeOOit1VYdhc4msaPJk08qIk3Aiy0mC27wtbUf-9s2sRJmAkz7w2Ph9A1JXeUEH6fIXFREFLCaZpCnqAZkZUsBOefp2hGp6aAOEcXOX8RAJZlPUPLt0GPQXc4xNbtQ1zj3uNNWG-KNmxdzKGPMGz1qLHR2bW4jzi5Djg_DuthSP0-bOHWx0t05nWX3dWxztHH0-P74qVYvT4vFw-rwjIpx4K2RjAhjPZ1VUpPnGXcUEs4FboW0tSW1ZJ42jRGQ9DKcFnBzDMiStsYNke3h73w9vfO5VFtQ7au63R0_S6rUlZ1TZgEID0AbepzTs6rIYHW9KsoUZNp6mCaAi_UZJqaODfH5Tpb3fmkow35nwhfYKCS_QHq0mz7</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>SAKURAI, Yasushi</creator><creator>YOSHIKAWA, Masatoshi</creator><creator>UEMURA, Shunsuke</creator><creator>KOJIMA, Haruhiko</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20021001</creationdate><title>Spatial indexing of high-dimensional data based on relative approximation</title><author>SAKURAI, Yasushi ; YOSHIKAWA, Masatoshi ; UEMURA, Shunsuke ; KOJIMA, Haruhiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-1db8388baf5429f0ec37b1c0718a589b5c3590f166baaaa14b79418af3082c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Information systems. Data bases</topic><topic>Memory organisation. Data processing</topic><topic>Software</topic><toplevel>online_resources</toplevel><creatorcontrib>SAKURAI, Yasushi</creatorcontrib><creatorcontrib>YOSHIKAWA, Masatoshi</creatorcontrib><creatorcontrib>UEMURA, Shunsuke</creatorcontrib><creatorcontrib>KOJIMA, Haruhiko</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The VLDB journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SAKURAI, Yasushi</au><au>YOSHIKAWA, Masatoshi</au><au>UEMURA, Shunsuke</au><au>KOJIMA, Haruhiko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial indexing of high-dimensional data based on relative approximation</atitle><jtitle>The VLDB journal</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>11</volume><issue>2</issue><spage>93</spage><epage>108</epage><pages>93-108</pages><issn>1066-8888</issn><eissn>0949-877X</eissn><abstract>We propose a novel index structure, the A-tree (approximation tree), for similarity searches in high-dimensional data. The basic idea of the A-tree is the introduction of virtual bounding rectangles (VBRs) which contain and approximate MBRs or data objects. VBRs can be represented quite compactly and thus affect the tree configuration both quantitatively and qualitatively. First, since tree nodes can contain a large number of VBR entries, fanout becomes large, which increases search speed. More importantly, we have a free hand in arranging MBRs and VBRs in the tree nodes. Each A-tree node contains an MBR and its children VBRs. Therefore, by fetching an A-tree node, we can obtain information on the exact position of a parent MBR and the approximate position of its children. We have performed experiments using both synthetic and real data sets. For the real data sets, the A-tree outperforms the SR-tree and the VA-file in all dimensionalities up to 64 dimensions, which is the highest dimension in our experiments. Additionally, we propose a cost model for the A-tree. We verify the validity of the cost model for synthetic and real data sets.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s00778-002-0066-9</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1066-8888 |
ispartof | The VLDB journal, 2002-10, Vol.11 (2), p.93-108 |
issn | 1066-8888 0949-877X |
language | eng |
recordid | cdi_proquest_miscellaneous_29455039 |
source | Springer Nature; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Applied sciences Computer science control theory systems Exact sciences and technology Information systems. Data bases Memory organisation. Data processing Software |
title | Spatial indexing of high-dimensional data based on relative approximation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20indexing%20of%20high-dimensional%20data%20based%20on%20relative%20approximation&rft.jtitle=The%20VLDB%20journal&rft.au=SAKURAI,%20Yasushi&rft.date=2002-10-01&rft.volume=11&rft.issue=2&rft.spage=93&rft.epage=108&rft.pages=93-108&rft.issn=1066-8888&rft.eissn=0949-877X&rft_id=info:doi/10.1007/s00778-002-0066-9&rft_dat=%3Cproquest_cross%3E29455039%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-1db8388baf5429f0ec37b1c0718a589b5c3590f166baaaa14b79418af3082c6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29455039&rft_id=info:pmid/&rfr_iscdi=true |