Loading…

Numerical heat transfer predictions and mass/heat transfer measurements in a linear turbine cascade

The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients...

Full description

Saved in:
Bibliographic Details
Published in:Applied thermal engineering 2007-03, Vol.27 (4), p.771-778
Main Authors: Papa, M., Goldstein, R.J., Gori, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of secondary flows on mass transfer from a simulated gas turbine blade and hubwall is investigated. Measurements performed using naphthalene sublimation provide non-dimensional mass transfer coefficients, in the form of Sherwood numbers, that can be converted to heat transfer coefficients through the use of an analogy. Tests are conducted in a linear cascade composed of five blades having the profile of a first stage rotor blade of a high-pressure turbine aircraft engine. Detailed mass transfer maps on the airfoil and endwall surfaces allow the identification of significant flow features that are in good agreement with existing secondary flow models. These results are well suited for validation of numerical codes, as they are obtained with an accurate technique that does not suffer from conduction or radiation errors and allows the imposition of precise boundary conditions. The performance of a RANS (Reynolds-Averaged Navier–Stokes) numerical code that simulates the flow and heat/mass transfer in the cascade using the SST (Shear Stress Transport) k– ω model is evaluated through a comparison with the experimental results.
ISSN:1359-4311
DOI:10.1016/j.applthermaleng.2006.10.017