Loading…

Structure and optical properties of plasma immersion ion processed boron-alloyed diamondlike carbon films

Boron (B)-alloyed diamondlike carbon (B-DLC) films were prepared on polymethyl methacrylate (PMMA), glass, and silicon (100) using an inductive radio frequency Ar + C2H2 + B2H6 plasma immersion ion processing (PIIP) technique. The composition of the B-DLC films was measured by ion beam analysis tech...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2006-06, Vol.21 (6), p.1451-1459
Main Authors: He, Xiao-Ming, Walter, K.C., Nastasi, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Boron (B)-alloyed diamondlike carbon (B-DLC) films were prepared on polymethyl methacrylate (PMMA), glass, and silicon (100) using an inductive radio frequency Ar + C2H2 + B2H6 plasma immersion ion processing (PIIP) technique. The composition of the B-DLC films was measured by ion beam analysis techniques, and the bonding structure was characterized by infrared and Raman spectroscopy. The incorporation of B2H6 gas into the PIIP deposition introduced B-C bonds into the DLC structure, resulting in increased sp3-carbon bonding and improved optical performance. The energetic activation of the deposition atoms, induced by the ion bombardment during the PIIP film growth, enhanced the properties of the B-DLC films deposited on dielectric and transparent optical materials. With B-alloying and an optimized deposition energy of 40–135 eV, B-DLC films were synthesized with B-alloying up to 10.4 at.%, high hardness, high refractive index, and optical transmittance that is higher than that of unalloyed DLC films. The experimental results indicate that C-B hybridization and ion-energy transfer are critical to the synthesis of these hard and transparent B-DLC films.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2006.0179