Loading…
Single step cell lysis/PCR detection of Escherichia coli in an independently controllable silicon microreactor
Our studies describe a novel microreactor capable of single step microbial assays involving cell lysis and DNA amplification. The device with an integrated platinum heater and temperature sensor, was fabricated using conventional silicon fabrication technologies and then anodically bonded to a Pyrex...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2007-01, Vol.120 (2), p.538-544 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our studies describe a novel microreactor capable of single step microbial assays involving cell lysis and DNA amplification. The device with an integrated platinum heater and temperature sensor, was fabricated using conventional silicon fabrication technologies and then anodically bonded to a Pyrex lid. Finite element analysis (FEA) and experiments have shown that the temperature uniformity in the microreactor reaction cavity is homogeneous and that the microreactor is capable of fast thermal cycling with heating and cooling rates of 11 and 2.7
°C/s, respectively. The microreactor has novel design features, such as a thermal isolation channel which eliminates thermal cross talk and an inlet/outlet port designed for ease of use. The fabricated microreactor was successfully characterised using a multifunction microbial assay involving cell lysis and PCR in a single step. An assay time of 32
min was achieved. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2006.03.019 |