Loading…

Investigation of plasma oxynitridation of Si(001) by NH3/N2O/Ar remote plasma processing

Plasma oxynitridation of Si(001) was carried out by NH3/N2O/Ar remote plasma generated from a toroidal-type remote plasma source in a commercial 8-in. plasma-enhanced chemical vapor deposition (PECVD) system. Oxynitridation experiments of Si were performed by varying the NH3/NZO/Ar gas flow ratio an...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2005-04, Vol.193 (1-3), p.350-355
Main Authors: KANG, S. C, OH, C. H, LEE, N.-E, KWON, T. K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasma oxynitridation of Si(001) was carried out by NH3/N2O/Ar remote plasma generated from a toroidal-type remote plasma source in a commercial 8-in. plasma-enhanced chemical vapor deposition (PECVD) system. Oxynitridation experiments of Si were performed by varying the NH3/NZO/Ar gas flow ratio and plasma exposure time at the substrate temperature of 500 DGC. Time evolution of the layer thickness, chemical composition, and bonding characteristics of the silicon oxynitride layers were investigated by various analytical methods including X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and high-resolution transmission electron microscopy (HR-TEM). The results showed a formation of the silicon oxynitride layers with the film thickness of 1.5-2.0 nm and different compositions depending on the experimental conditions. N content incorporated in the silicon oxynitride increases but the growth rate of silicon oxynitride layer decreases with increasing NH3/NO gas flow ratio.
ISSN:0257-8972
1879-3347
DOI:10.1016/j.surfcoat.2004.08.117