Loading…

Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation

Self‐supported asymmetric hollow‐fiber membranes of mixed oxygen‐ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3‐δ (BSCF) were prepared by a combined phase‐inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA–citrate complexing process f...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2006-10, Vol.52 (10), p.3452-3461
Main Authors: Liu, S., Tan, X., Shao, Z., Diniz da Costa, J. C.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3461
container_issue 10
container_start_page 3452
container_title AIChE journal
container_volume 52
creator Liu, S.
Tan, X.
Shao, Z.
Diniz da Costa, J. C.
description Self‐supported asymmetric hollow‐fiber membranes of mixed oxygen‐ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3‐δ (BSCF) were prepared by a combined phase‐inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA–citrate complexing process followed by thermal treatment at 600°C. The powder was dispersed in a polymer solution and then extruded into hollow‐fiber precursors through a spinneret. The fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow‐fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol·m−2·s−1 at 950°C with the sweep gas flow rate of 0.522 mol·m−2·s−1. To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. © 2006 American Institute of Chemical Engineers AIChE J, 2006
doi_str_mv 10.1002/aic.10966
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_29481048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29481048</sourcerecordid><originalsourceid>FETCH-LOGICAL-i2596-697d7f2ce9de238008ba1e5771f8b81518e3e7180075a8743fa2192bb149c6613</originalsourceid><addsrcrecordid>eNpFUEtOwzAUtBBIlMKCG2QDu6T-xLG9LBEtlUq7oAh2lpO-gCFpit2q7b04B2fCtAg27zczT6NB6JLghGBMe8aWYVBZdoQ6hKci5grzY9TBGJM4HMgpOvP-LWxUSNpBkxuDE_7gQslbnMgB4IROWfz1GZXgTGPL6LWt63YTV7YAFzXQFM4swEdV66J2u3uBRbQE14BZ2XZxjk4qU3u4-O1d9Di4neV38Xg6HOX9cWwpV1mcKTEXFS1BzYEyibEsDAEuBKlkIQknEhgIEgDBjRQpqwwlihYFSVWZZYR10fXh79K1H2vwK91YX0JdB2vt2muqUklwKgPx6pdofGnqKngvrddLZxvjdppIkmaM08DrHXgbW8PuH8f6J1YdYtX7WHV_lO-HoIgPCutXsP1TGPeuM8EE10-Tob5X-Wz2zGYas298y3h9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29481048</pqid></control><display><type>article</type><title>Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation</title><source>Wiley</source><creator>Liu, S. ; Tan, X. ; Shao, Z. ; Diniz da Costa, J. C.</creator><creatorcontrib>Liu, S. ; Tan, X. ; Shao, Z. ; Diniz da Costa, J. C.</creatorcontrib><description>Self‐supported asymmetric hollow‐fiber membranes of mixed oxygen‐ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3‐δ (BSCF) were prepared by a combined phase‐inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA–citrate complexing process followed by thermal treatment at 600°C. The powder was dispersed in a polymer solution and then extruded into hollow‐fiber precursors through a spinneret. The fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow‐fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol·m−2·s−1 at 950°C with the sweep gas flow rate of 0.522 mol·m−2·s−1. To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. © 2006 American Institute of Chemical Engineers AIChE J, 2006</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10966</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>air separation ; Applied sciences ; Chemical engineering ; Exact sciences and technology ; hollow-fiber membrane ; Membrane separation (reverse osmosis, dialysis...) ; mixed conducting ceramic ; Organic polymers ; perovskite membrane ; Physicochemistry of polymers ; Properties and characterization ; Sintering, pelletization, granulation ; Solid-solid systems ; Solution and gel properties</subject><ispartof>AIChE journal, 2006-10, Vol.52 (10), p.3452-3461</ispartof><rights>Copyright © 2006 American Institute of Chemical Engineers (AIChE)</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18146352$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Tan, X.</creatorcontrib><creatorcontrib>Shao, Z.</creatorcontrib><creatorcontrib>Diniz da Costa, J. C.</creatorcontrib><title>Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>Self‐supported asymmetric hollow‐fiber membranes of mixed oxygen‐ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3‐δ (BSCF) were prepared by a combined phase‐inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA–citrate complexing process followed by thermal treatment at 600°C. The powder was dispersed in a polymer solution and then extruded into hollow‐fiber precursors through a spinneret. The fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow‐fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol·m−2·s−1 at 950°C with the sweep gas flow rate of 0.522 mol·m−2·s−1. To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. © 2006 American Institute of Chemical Engineers AIChE J, 2006</description><subject>air separation</subject><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>hollow-fiber membrane</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>mixed conducting ceramic</subject><subject>Organic polymers</subject><subject>perovskite membrane</subject><subject>Physicochemistry of polymers</subject><subject>Properties and characterization</subject><subject>Sintering, pelletization, granulation</subject><subject>Solid-solid systems</subject><subject>Solution and gel properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFUEtOwzAUtBBIlMKCG2QDu6T-xLG9LBEtlUq7oAh2lpO-gCFpit2q7b04B2fCtAg27zczT6NB6JLghGBMe8aWYVBZdoQ6hKci5grzY9TBGJM4HMgpOvP-LWxUSNpBkxuDE_7gQslbnMgB4IROWfz1GZXgTGPL6LWt63YTV7YAFzXQFM4swEdV66J2u3uBRbQE14BZ2XZxjk4qU3u4-O1d9Di4neV38Xg6HOX9cWwpV1mcKTEXFS1BzYEyibEsDAEuBKlkIQknEhgIEgDBjRQpqwwlihYFSVWZZYR10fXh79K1H2vwK91YX0JdB2vt2muqUklwKgPx6pdofGnqKngvrddLZxvjdppIkmaM08DrHXgbW8PuH8f6J1YdYtX7WHV_lO-HoIgPCutXsP1TGPeuM8EE10-Tob5X-Wz2zGYas298y3h9</recordid><startdate>200610</startdate><enddate>200610</enddate><creator>Liu, S.</creator><creator>Tan, X.</creator><creator>Shao, Z.</creator><creator>Diniz da Costa, J. C.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200610</creationdate><title>Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation</title><author>Liu, S. ; Tan, X. ; Shao, Z. ; Diniz da Costa, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i2596-697d7f2ce9de238008ba1e5771f8b81518e3e7180075a8743fa2192bb149c6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>air separation</topic><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>hollow-fiber membrane</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>mixed conducting ceramic</topic><topic>Organic polymers</topic><topic>perovskite membrane</topic><topic>Physicochemistry of polymers</topic><topic>Properties and characterization</topic><topic>Sintering, pelletization, granulation</topic><topic>Solid-solid systems</topic><topic>Solution and gel properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, S.</creatorcontrib><creatorcontrib>Tan, X.</creatorcontrib><creatorcontrib>Shao, Z.</creatorcontrib><creatorcontrib>Diniz da Costa, J. C.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, S.</au><au>Tan, X.</au><au>Shao, Z.</au><au>Diniz da Costa, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2006-10</date><risdate>2006</risdate><volume>52</volume><issue>10</issue><spage>3452</spage><epage>3461</epage><pages>3452-3461</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>Self‐supported asymmetric hollow‐fiber membranes of mixed oxygen‐ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3‐δ (BSCF) were prepared by a combined phase‐inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA–citrate complexing process followed by thermal treatment at 600°C. The powder was dispersed in a polymer solution and then extruded into hollow‐fiber precursors through a spinneret. The fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow‐fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol·m−2·s−1 at 950°C with the sweep gas flow rate of 0.522 mol·m−2·s−1. To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. © 2006 American Institute of Chemical Engineers AIChE J, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10966</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2006-10, Vol.52 (10), p.3452-3461
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_29481048
source Wiley
subjects air separation
Applied sciences
Chemical engineering
Exact sciences and technology
hollow-fiber membrane
Membrane separation (reverse osmosis, dialysis...)
mixed conducting ceramic
Organic polymers
perovskite membrane
Physicochemistry of polymers
Properties and characterization
Sintering, pelletization, granulation
Solid-solid systems
Solution and gel properties
title Ba0.5Sr0.5Co0.8Fe0.2O3-δ ceramic hollow-fiber membranes for oxygen permeation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A17%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ba0.5Sr0.5Co0.8Fe0.2O3-%CE%B4%20ceramic%20hollow-fiber%20membranes%20for%20oxygen%20permeation&rft.jtitle=AIChE%20journal&rft.au=Liu,%20S.&rft.date=2006-10&rft.volume=52&rft.issue=10&rft.spage=3452&rft.epage=3461&rft.pages=3452-3461&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10966&rft_dat=%3Cproquest_pasca%3E29481048%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i2596-697d7f2ce9de238008ba1e5771f8b81518e3e7180075a8743fa2192bb149c6613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29481048&rft_id=info:pmid/&rfr_iscdi=true