Loading…
Exchange interactions, spin waves, and transition temperatures in itinerant magnets
This contribution reviews an ab initio two-step procedure to determine exchange interactions, spin-wave spectra, and thermodynamic properties of itinerant magnets. In the first step, the self-consistent electronic structure of a system is calculated for a collinear spin structure at zero temperature...
Saved in:
Published in: | Philosophical magazine (Abingdon, England) England), 2006-04, Vol.86 (12), p.1713-1752 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This contribution reviews an ab initio two-step procedure to determine exchange interactions, spin-wave spectra, and thermodynamic properties of itinerant magnets. In the first step, the self-consistent electronic structure of a system is calculated for a collinear spin structure at zero temperature. In the second step, parameters of an effective classical Heisenberg Hamiltonian are determined using the magnetic force theorem and the one-electron Green functions. The Heisenberg Hamiltonian and methods of statistical physics are employed in subsequent evaluation of magnon dispersion laws, spin-wave stiffness constants, and Curie/Néel temperatures. The applicability of the developed scheme is illustrated by selected properties of various systems such as transition and rare-earth metals, disordered alloys including diluted magnetic semiconductors, ultrathin films, and surfaces. A comparison to other ab initio approaches is presented as well. |
---|---|
ISSN: | 1478-6435 1478-6443 1478-6433 |
DOI: | 10.1080/14786430500504048 |