Loading…

Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries

Despite the increased interest in hyperthermophiles and the rate of discovery of new species, their potential within the biotechnology industry has not been fully realized to date. The physiological characterization and biochemical survival mechanisms of marine hyperthermophilic Bacteria and Archaea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Chemical Technology & Biotechnology 2000-12, Vol.75 (12), p.1095-1109
Main Authors: Bustard, Mark T, Burgess, J Grant, Meeyoo, Vissanu, Wright, Phillip C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Despite the increased interest in hyperthermophiles and the rate of discovery of new species, their potential within the biotechnology industry has not been fully realized to date. The physiological characterization and biochemical survival mechanisms of marine hyperthermophilic Bacteria and Archaea are currently under investigation. However, very little information on their application in bioprocess systems is available. Since only a fraction of the world's oceans has been explored, the potential for isolating novel strains of marine hyperthermophiles is significant and hence they represent an, as yet, untapped biotechnological resource. Although much research has focused on the extraction of thermoactive enzymes, whole cell applications have been relatively overlooked. Running bioprocess systems using marine hyperthermophiles poses an interesting set of objectives, such as high temperature bioreactor operation and corrosion reduction of materials, for bioreactor design and manipulation of their products. Here, we discuss the biotechnological potential of marine hyperthermophiles from a biochemical engineering perspective and their use in ‘green chemistry’ applications. Both the bioprocess intensification implications and problems associated with cultivating these microbes in industrially relevant bioreactor systems are discussed from both a microbiological and chemical engineering perspective. © 2000 Society of Chemical Industry
ISSN:0268-2575
1097-4660
DOI:10.1002/1097-4660(200012)75:12<1095::AID-JCTB327>3.0.CO;2-3