Loading…
Ferrocene-filled single-walled carbon nanotubes
Ferrocene molecules are successfully introduced into the inner hollow space of Single-walled carbon nanotubes (SWNTs) to get ferrocene-filled SWNTs (Fc@SWNTs). This nanohybrid material was carefully characterized by high resolution microscopy, FTIR spectrum, and Cyclic voltammetry (CV). This new mat...
Saved in:
Published in: | Carbon (New York) 2005-11, Vol.43 (13), p.2780-2785 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ferrocene molecules are successfully introduced into the inner hollow space of Single-walled carbon nanotubes (SWNTs) to get ferrocene-filled SWNTs (Fc@SWNTs). This nanohybrid material was carefully characterized by high resolution microscopy, FTIR spectrum, and Cyclic voltammetry (CV). This new material may not only act as air stable n-type field-effect transistors based on nanotubes, but it may also be employed as building blocks for various devices based on the redox activity of ferrocene. What’s more, upon high temperature annealing, the encapsulated ferrocene molecules will decompose and change into interior tubes, forming double-walled carbon nanotubes (DWNTs). This provides convincing evidence that ferrocene molecules are inserted into the hollow cavities SWNTs. This result also presented a controllable way to synthesize DWNTs. |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2005.05.025 |