Loading…
Prioritizing ocean colour channels by neural network input reflectance perturbation
The radiative transfer model Hydrolight was used to produce 18 000 artificial reflectance spectra representing case 1 and case 2 water conditions. Remote sensing reflectances were generated at the MERIS wavebands 412, 442, 490, 510, 560, 620, 665 and 682 nm from randomly generated triplet combinatio...
Saved in:
Published in: | International journal of remote sensing 2005-03, Vol.26 (5), p.1043-1048 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73 |
container_end_page | 1048 |
container_issue | 5 |
container_start_page | 1043 |
container_title | International journal of remote sensing |
container_volume | 26 |
creator | Dransfeld, S. Tatnall, A. R. Robinson, I. S. Mobley, C. D. |
description | The radiative transfer model Hydrolight was used to produce 18 000 artificial reflectance spectra representing case 1 and case 2 water conditions. Remote sensing reflectances were generated at the MERIS wavebands 412, 442, 490, 510, 560, 620, 665 and 682 nm from randomly generated triplet combinations of chlorophyll a, non-chlorophyllous particles and coloured dissolved organic matter concentrations. These spectra were used to train multilayer perceptron neural network algorithms to perform the inversion from input reflectances to these three optically active substances. A method is proposed that establishes the neural network output error sensitivity towards changes in the individual input reflectance channels. From the output error produced for each reflectance change, a hypothesis about the importance of each band can be made. Results suggest a strong weight associated to the 620 nm band for the estimation of all three substances. |
doi_str_mv | 10.1080/01431160512331314100 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29512816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17337101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKv_wEMuelvNNNnsxouI-AUFhXpfsmlWo2lSkyxaf70prXgp9jSX551550HoGMgZkJqcE2AUgJMSRpQCBQaE7KABUM6LUhDYRYMlUmQG9tFBjG-EEF6V1QBNnoLxwSTzbdwL9kpLh5W3vg9YvUrntI24XWCn-yBtHunTh3ds3LxPOOjOapWkUxrPdUh9aGUy3h2ivU7aqI_Wc4gmtzfP1_fF-PHu4fpqXChWklTUnKiRyHVJJ9qy7bQQgmoqJC9VzagQTFMoW1VKqqdsymvW8YppwapatBUdotPV1nnwH72OqZmZqLS10mnfx2Ykso4a-FYQKkorIJBBtgJV8DHm75p5MDMZFg2QZim62SQ6x07W-2VU0nYhCzHxL8sZr4VY9rhYccZ1PsxkNmmnTZIL68NvaNOBJn2lHL7cGqb_1vwB3xKj9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17337101</pqid></control><display><type>article</type><title>Prioritizing ocean colour channels by neural network input reflectance perturbation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dransfeld, S. ; Tatnall, A. R. ; Robinson, I. S. ; Mobley, C. D.</creator><creatorcontrib>Dransfeld, S. ; Tatnall, A. R. ; Robinson, I. S. ; Mobley, C. D.</creatorcontrib><description>The radiative transfer model Hydrolight was used to produce 18 000 artificial reflectance spectra representing case 1 and case 2 water conditions. Remote sensing reflectances were generated at the MERIS wavebands 412, 442, 490, 510, 560, 620, 665 and 682 nm from randomly generated triplet combinations of chlorophyll a, non-chlorophyllous particles and coloured dissolved organic matter concentrations. These spectra were used to train multilayer perceptron neural network algorithms to perform the inversion from input reflectances to these three optically active substances. A method is proposed that establishes the neural network output error sensitivity towards changes in the individual input reflectance channels. From the output error produced for each reflectance change, a hypothesis about the importance of each band can be made. Results suggest a strong weight associated to the 620 nm band for the estimation of all three substances.</description><identifier>ISSN: 0143-1161</identifier><identifier>EISSN: 1366-5901</identifier><identifier>DOI: 10.1080/01431160512331314100</identifier><identifier>CODEN: IJSEDK</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis Group</publisher><subject>Applied geophysics ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Internal geophysics ; Marine geology</subject><ispartof>International journal of remote sensing, 2005-03, Vol.26 (5), p.1043-1048</ispartof><rights>Copyright Taylor & Francis Group, LLC 2005</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73</citedby><cites>FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16468996$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dransfeld, S.</creatorcontrib><creatorcontrib>Tatnall, A. R.</creatorcontrib><creatorcontrib>Robinson, I. S.</creatorcontrib><creatorcontrib>Mobley, C. D.</creatorcontrib><title>Prioritizing ocean colour channels by neural network input reflectance perturbation</title><title>International journal of remote sensing</title><description>The radiative transfer model Hydrolight was used to produce 18 000 artificial reflectance spectra representing case 1 and case 2 water conditions. Remote sensing reflectances were generated at the MERIS wavebands 412, 442, 490, 510, 560, 620, 665 and 682 nm from randomly generated triplet combinations of chlorophyll a, non-chlorophyllous particles and coloured dissolved organic matter concentrations. These spectra were used to train multilayer perceptron neural network algorithms to perform the inversion from input reflectances to these three optically active substances. A method is proposed that establishes the neural network output error sensitivity towards changes in the individual input reflectance channels. From the output error produced for each reflectance change, a hypothesis about the importance of each band can be made. Results suggest a strong weight associated to the 620 nm band for the estimation of all three substances.</description><subject>Applied geophysics</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Internal geophysics</subject><subject>Marine geology</subject><issn>0143-1161</issn><issn>1366-5901</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKv_wEMuelvNNNnsxouI-AUFhXpfsmlWo2lSkyxaf70prXgp9jSX551550HoGMgZkJqcE2AUgJMSRpQCBQaE7KABUM6LUhDYRYMlUmQG9tFBjG-EEF6V1QBNnoLxwSTzbdwL9kpLh5W3vg9YvUrntI24XWCn-yBtHunTh3ds3LxPOOjOapWkUxrPdUh9aGUy3h2ivU7aqI_Wc4gmtzfP1_fF-PHu4fpqXChWklTUnKiRyHVJJ9qy7bQQgmoqJC9VzagQTFMoW1VKqqdsymvW8YppwapatBUdotPV1nnwH72OqZmZqLS10mnfx2Ykso4a-FYQKkorIJBBtgJV8DHm75p5MDMZFg2QZim62SQ6x07W-2VU0nYhCzHxL8sZr4VY9rhYccZ1PsxkNmmnTZIL68NvaNOBJn2lHL7cGqb_1vwB3xKj9w</recordid><startdate>20050301</startdate><enddate>20050301</enddate><creator>Dransfeld, S.</creator><creator>Tatnall, A. R.</creator><creator>Robinson, I. S.</creator><creator>Mobley, C. D.</creator><general>Taylor & Francis Group</general><general>Taylor and Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050301</creationdate><title>Prioritizing ocean colour channels by neural network input reflectance perturbation</title><author>Dransfeld, S. ; Tatnall, A. R. ; Robinson, I. S. ; Mobley, C. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied geophysics</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Internal geophysics</topic><topic>Marine geology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dransfeld, S.</creatorcontrib><creatorcontrib>Tatnall, A. R.</creatorcontrib><creatorcontrib>Robinson, I. S.</creatorcontrib><creatorcontrib>Mobley, C. D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dransfeld, S.</au><au>Tatnall, A. R.</au><au>Robinson, I. S.</au><au>Mobley, C. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prioritizing ocean colour channels by neural network input reflectance perturbation</atitle><jtitle>International journal of remote sensing</jtitle><date>2005-03-01</date><risdate>2005</risdate><volume>26</volume><issue>5</issue><spage>1043</spage><epage>1048</epage><pages>1043-1048</pages><issn>0143-1161</issn><eissn>1366-5901</eissn><coden>IJSEDK</coden><abstract>The radiative transfer model Hydrolight was used to produce 18 000 artificial reflectance spectra representing case 1 and case 2 water conditions. Remote sensing reflectances were generated at the MERIS wavebands 412, 442, 490, 510, 560, 620, 665 and 682 nm from randomly generated triplet combinations of chlorophyll a, non-chlorophyllous particles and coloured dissolved organic matter concentrations. These spectra were used to train multilayer perceptron neural network algorithms to perform the inversion from input reflectances to these three optically active substances. A method is proposed that establishes the neural network output error sensitivity towards changes in the individual input reflectance channels. From the output error produced for each reflectance change, a hypothesis about the importance of each band can be made. Results suggest a strong weight associated to the 620 nm band for the estimation of all three substances.</abstract><cop>Abingdon</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01431160512331314100</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0143-1161 |
ispartof | International journal of remote sensing, 2005-03, Vol.26 (5), p.1043-1048 |
issn | 0143-1161 1366-5901 |
language | eng |
recordid | cdi_proquest_miscellaneous_29512816 |
source | Taylor and Francis Science and Technology Collection |
subjects | Applied geophysics Earth sciences Earth, ocean, space Exact sciences and technology Internal geophysics Marine geology |
title | Prioritizing ocean colour channels by neural network input reflectance perturbation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A07%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prioritizing%20ocean%20colour%20channels%20by%20neural%20network%20input%20reflectance%20perturbation&rft.jtitle=International%20journal%20of%20remote%20sensing&rft.au=Dransfeld,%20S.&rft.date=2005-03-01&rft.volume=26&rft.issue=5&rft.spage=1043&rft.epage=1048&rft.pages=1043-1048&rft.issn=0143-1161&rft.eissn=1366-5901&rft.coden=IJSEDK&rft_id=info:doi/10.1080/01431160512331314100&rft_dat=%3Cproquest_cross%3E17337101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-860c291310f9b5bfe9993e39a65c843994e315bc5a3ed4d684f674e94789b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17337101&rft_id=info:pmid/&rfr_iscdi=true |