Loading…

Properties of vulcanizates from blends of natural rubber and thioglycolic acid modified, epoxidized, low-molecular-weight natural rubber filled with carbonized rubber seed shell

Vulcanizates from blends of natural rubber and thioglycolic acid modified, epoxidized, low‐molecular‐weight natural rubber filled with mixtures of carbon black and carbonized rubber seed shell, with semiefficient sulfur vulcanization recipes, were critically investigated and characterized. The inves...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2007-06, Vol.104 (5), p.2830-2838
Main Authors: Akinlabi, A. K., Okieimen, F. E., Okwu, U. N., Oladoja, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Vulcanizates from blends of natural rubber and thioglycolic acid modified, epoxidized, low‐molecular‐weight natural rubber filled with mixtures of carbon black and carbonized rubber seed shell, with semiefficient sulfur vulcanization recipes, were critically investigated and characterized. The investigated properties were the processing and rheological properties (the cure rate, cure time, scorch time, total oscillating disc rheometry torque, and Mooney viscosity), physicomechanical and chemical properties, solvent resistance, solubility, and swelling properties. On the basis of the investigated properties, it was observed that the carbonized rubber seed shell acted as a plasticizer and not as a reinforcing filler such as carbon black. The replacement of carbon black with up to 20% carbonized rubber seed shell produced vulcanizates having processing advantages in time gain and energy consumption, with their physical, chemical, and mechanical properties around the acceptable level for natural rubber compounds but lower than the properties obtained for a 100% carbon black filled vulcanizate. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007
ISSN:0021-8995
1097-4628
DOI:10.1002/app.25608