Loading…

Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model

Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter fam...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical methods in the applied sciences 2006-12, Vol.29 (18), p.2181-2199
Main Author: Shubov, Marianna A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3
cites cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3
container_end_page 2199
container_issue 18
container_start_page 2181
container_title Mathematical methods in the applied sciences
container_volume 29
creator Shubov, Marianna A.
description Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.768
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29546650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29546650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</originalsourceid><addsrcrecordid>eNp10E1v1DAUhWELgcRQEH_BG2CBUnwdJx4vy6iEjw5IFMTSunZukIsTD_YEmH9PUCpYsTqbR-_iMPYYxDkIIV-MI57rdnuHbUAYU4HS7V22EaBFpSSo--xBKTdCiC2A3LCPHU2U8RjSxNPAO_qR6cR9xFJ4oTF8zWk-cHfiU5qqQnHA_iaF6cgv50i5ekl5SnOMgTvCkY-pp_iQ3RswFnp0u2fs86vLT7vX1dWH7s3u4qrySrbbSvYtNOgMDP1AjXTKtdSDrCV6Bb3pvWp07bRG5TQocNpoNAaEdzCg6V19xp6u3UNO32cqRzuG4ilGnCjNxUrTqLZtxAKfrdDnVEqmwR5yGDGfLAj75zO7fGaXzxb55DaJxWMcMk4-lH98K5eeMot7vrqfIdLpfzm731-s1WrVoRzp11-N-Zttda0b--V9Z6_3Xfd29-7aNvVvupaJjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29546650</pqid></control><display><type>article</type><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><source>Wiley</source><creator>Shubov, Marianna A.</creator><creatorcontrib>Shubov, Marianna A.</creatorcontrib><description>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.768</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gevrey class semigroup ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Riesz basis property ; Sciences and techniques of general use ; Solid mechanics ; Structural and continuum mechanics ; Structural mechanics (beam, string...) ; Theory and numerical methods</subject><ispartof>Mathematical methods in the applied sciences, 2006-12, Vol.29 (18), p.2181-2199</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</citedby><cites>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18265049$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shubov, Marianna A.</creatorcontrib><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gevrey class semigroup</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Riesz basis property</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structural mechanics (beam, string...)</subject><subject>Theory and numerical methods</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp10E1v1DAUhWELgcRQEH_BG2CBUnwdJx4vy6iEjw5IFMTSunZukIsTD_YEmH9PUCpYsTqbR-_iMPYYxDkIIV-MI57rdnuHbUAYU4HS7V22EaBFpSSo--xBKTdCiC2A3LCPHU2U8RjSxNPAO_qR6cR9xFJ4oTF8zWk-cHfiU5qqQnHA_iaF6cgv50i5ekl5SnOMgTvCkY-pp_iQ3RswFnp0u2fs86vLT7vX1dWH7s3u4qrySrbbSvYtNOgMDP1AjXTKtdSDrCV6Bb3pvWp07bRG5TQocNpoNAaEdzCg6V19xp6u3UNO32cqRzuG4ilGnCjNxUrTqLZtxAKfrdDnVEqmwR5yGDGfLAj75zO7fGaXzxb55DaJxWMcMk4-lH98K5eeMot7vrqfIdLpfzm731-s1WrVoRzp11-N-Zttda0b--V9Z6_3Xfd29-7aNvVvupaJjw</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Shubov, Marianna A.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200612</creationdate><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><author>Shubov, Marianna A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gevrey class semigroup</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Riesz basis property</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structural mechanics (beam, string...)</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubov, Marianna A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubov, Marianna A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2006-12</date><risdate>2006</risdate><volume>29</volume><issue>18</issue><spage>2181</spage><epage>2199</epage><pages>2181-2199</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/mma.768</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2006-12, Vol.29 (18), p.2181-2199
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_29546650
source Wiley
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Gevrey class semigroup
Mathematical analysis
Mathematics
Partial differential equations
Physics
Riesz basis property
Sciences and techniques of general use
Solid mechanics
Structural and continuum mechanics
Structural mechanics (beam, string...)
Theory and numerical methods
title Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Gevrey%20class%20semigroup%20by%20non-selfadjoint%20Euler-Bernoulli%20beam%20model&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shubov,%20Marianna%20A.&rft.date=2006-12&rft.volume=29&rft.issue=18&rft.spage=2181&rft.epage=2199&rft.pages=2181-2199&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.768&rft_dat=%3Cproquest_cross%3E29546650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29546650&rft_id=info:pmid/&rfr_iscdi=true