Loading…
Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model
Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter fam...
Saved in:
Published in: | Mathematical methods in the applied sciences 2006-12, Vol.29 (18), p.2181-2199 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3 |
container_end_page | 2199 |
container_issue | 18 |
container_start_page | 2181 |
container_title | Mathematical methods in the applied sciences |
container_volume | 29 |
creator | Shubov, Marianna A. |
description | Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.768 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29546650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29546650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</originalsourceid><addsrcrecordid>eNp10E1v1DAUhWELgcRQEH_BG2CBUnwdJx4vy6iEjw5IFMTSunZukIsTD_YEmH9PUCpYsTqbR-_iMPYYxDkIIV-MI57rdnuHbUAYU4HS7V22EaBFpSSo--xBKTdCiC2A3LCPHU2U8RjSxNPAO_qR6cR9xFJ4oTF8zWk-cHfiU5qqQnHA_iaF6cgv50i5ekl5SnOMgTvCkY-pp_iQ3RswFnp0u2fs86vLT7vX1dWH7s3u4qrySrbbSvYtNOgMDP1AjXTKtdSDrCV6Bb3pvWp07bRG5TQocNpoNAaEdzCg6V19xp6u3UNO32cqRzuG4ilGnCjNxUrTqLZtxAKfrdDnVEqmwR5yGDGfLAj75zO7fGaXzxb55DaJxWMcMk4-lH98K5eeMot7vrqfIdLpfzm731-s1WrVoRzp11-N-Zttda0b--V9Z6_3Xfd29-7aNvVvupaJjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29546650</pqid></control><display><type>article</type><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><source>Wiley</source><creator>Shubov, Marianna A.</creator><creatorcontrib>Shubov, Marianna A.</creatorcontrib><description>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.768</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Gevrey class semigroup ; Mathematical analysis ; Mathematics ; Partial differential equations ; Physics ; Riesz basis property ; Sciences and techniques of general use ; Solid mechanics ; Structural and continuum mechanics ; Structural mechanics (beam, string...) ; Theory and numerical methods</subject><ispartof>Mathematical methods in the applied sciences, 2006-12, Vol.29 (18), p.2181-2199</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</citedby><cites>FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18265049$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shubov, Marianna A.</creatorcontrib><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gevrey class semigroup</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Riesz basis property</subject><subject>Sciences and techniques of general use</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Structural mechanics (beam, string...)</subject><subject>Theory and numerical methods</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp10E1v1DAUhWELgcRQEH_BG2CBUnwdJx4vy6iEjw5IFMTSunZukIsTD_YEmH9PUCpYsTqbR-_iMPYYxDkIIV-MI57rdnuHbUAYU4HS7V22EaBFpSSo--xBKTdCiC2A3LCPHU2U8RjSxNPAO_qR6cR9xFJ4oTF8zWk-cHfiU5qqQnHA_iaF6cgv50i5ekl5SnOMgTvCkY-pp_iQ3RswFnp0u2fs86vLT7vX1dWH7s3u4qrySrbbSvYtNOgMDP1AjXTKtdSDrCV6Bb3pvWp07bRG5TQocNpoNAaEdzCg6V19xp6u3UNO32cqRzuG4ilGnCjNxUrTqLZtxAKfrdDnVEqmwR5yGDGfLAj75zO7fGaXzxb55DaJxWMcMk4-lH98K5eeMot7vrqfIdLpfzm731-s1WrVoRzp11-N-Zttda0b--V9Z6_3Xfd29-7aNvVvupaJjw</recordid><startdate>200612</startdate><enddate>200612</enddate><creator>Shubov, Marianna A.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><general>Teubner</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>200612</creationdate><title>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</title><author>Shubov, Marianna A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gevrey class semigroup</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Riesz basis property</topic><topic>Sciences and techniques of general use</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Structural mechanics (beam, string...)</topic><topic>Theory and numerical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shubov, Marianna A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shubov, Marianna A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2006-12</date><risdate>2006</risdate><volume>29</volume><issue>18</issue><spage>2181</spage><epage>2199</epage><pages>2181-2199</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Asymptotic and spectral properties of a non‐selfadjoint operator that is a dynamics generator for the Euler–Bernoulli beam model of a finite length are studied in this paper. The hyperbolic equation, which governs the vibrations of the Euler–Bernoulli beam model, is supplied with a one‐parameter family of physically meaningful boundary conditions containing damping terms. The initial boundary‐value problem is equivalent to the evolution equation that generates a strongly continuous semigroup in the state space of the system. It is found that the semigroup, being non‐analytic, belongs to Gevrey class semigroups. This means that the differentiability of such semigroup is slightly weaker than that of an analytic semigroup. In the forthcoming works, the results of the present paper will be applied (a) to the solution of the exact controllability problem for Euler–Bernoulli beam and (b) to spectral analysis of a planar network of serially connected Euler–Bernoulli beams modelling ‘flying wing configurations’ in aeronautic engineering. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/mma.768</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2006-12, Vol.29 (18), p.2181-2199 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_miscellaneous_29546650 |
source | Wiley |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Gevrey class semigroup Mathematical analysis Mathematics Partial differential equations Physics Riesz basis property Sciences and techniques of general use Solid mechanics Structural and continuum mechanics Structural mechanics (beam, string...) Theory and numerical methods |
title | Generation of Gevrey class semigroup by non-selfadjoint Euler-Bernoulli beam model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20Gevrey%20class%20semigroup%20by%20non-selfadjoint%20Euler-Bernoulli%20beam%20model&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Shubov,%20Marianna%20A.&rft.date=2006-12&rft.volume=29&rft.issue=18&rft.spage=2181&rft.epage=2199&rft.pages=2181-2199&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.768&rft_dat=%3Cproquest_cross%3E29546650%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4268-2d615ab91fdfe52b4b6ed1232ac41d9dc4573b77a4b7141b797a9910cb1fa9db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29546650&rft_id=info:pmid/&rfr_iscdi=true |