Loading…
Current perspective in research and industrial applications of microbial cellulases
The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and β-glucosidase. The enzyme attacks the polymer...
Saved in:
Published in: | International journal of biological macromolecules 2024-04, Vol.264 (Pt 1), p.130639-130639, Article 130639 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The natural interactions between various bacteria, fungi, and other cellulolytic microorganisms destroy lignocellulosic polymers. The efficacy of this process is determined by the combined action of three main enzymes: endoglucanases, exo-glucanases, and β-glucosidase. The enzyme attacks the polymeric structure's β-1,4-linkages during the cellulose breakdown reaction. This mechanism is crucial for the environment as it recycles cellulose in the biosphere. However, there are problems with enzymatic cellulose breakdown, including complex cellulase structure, insufficient degradation efficacy, high production costs, and post-translational alterations, many of which are closely related to certain unidentified cellulase properties. These issues impede the practical use of cellulases. A developing area of research is the application of this similar paradigm for industrial objectives. Cellulase enzyme exhibits greater promise in many critical industries, including biofuel manufacture, textile smoothing and finishing, paper and pulp manufacturing, and farming. However, the study on cellulolytic enzymes must move forward in various directions, including increasing the activity of cellulase as well as designing peptides to give biocatalysts their desired attributes. This manuscript includes an overview of current research on different sources of cellulases, their production, and biochemical characterization. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.130639 |