Loading…
Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide
Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them incr...
Saved in:
Published in: | Chemosphere (Oxford) 2024-04, Vol.354, p.141583-141583, Article 141583 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3 |
container_end_page | 141583 |
container_issue | |
container_start_page | 141583 |
container_title | Chemosphere (Oxford) |
container_volume | 354 |
creator | Jeon, Je-Seung Cho, Gyeongjun Kim, Songhwa Riu, Myoungjoo Song, Jaekyeong |
description | Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
[Display omitted]
•Microbial composition in diazinon-exposed microcosm soil were analyzed.•Selection pressure by diazinon orchestrated the flourishing of the phylum Actinomycetota.•Network analysis revealed that the phylum Actinomycetota pose a central role within the microbial community.•Among diazinon-biodegradable-bacteria isolates, the largest proportion (70%) were affiliated with the phylum |
doi_str_mv | 10.1016/j.chemosphere.2024.141583 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954771665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045653524004764</els_id><sourcerecordid>2954771665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3</originalsourceid><addsrcrecordid>eNqNkEtv1DAQxy1ERZeFr4DMjQPZ2nGcxMdqVR5SJS7lbPkx3vUqsYPtIMqnr1dbEEdOo5H-j5kfQu8p2VFC-5vTzhxhjnk5QoJdS9puRzvKR_YCbeg4iIa2YnyJNoR0vOk549fodc4nQqqZi1fomo1dT0bONqjcmuJDnB8NlFjUR6ywgVCSmrCJIRdf1rri2ZsUNWC7Jh8OeIrh0BRIM4ZfS8xrAlwitl79rlmhhgQc00GFuBzPV8a0ZuxDhtplvIU36MqpKcPb57lF3z_dPey_NPffPn_d3943phVtadzYaU40YXoAZljXt_1oBIXBDdp2vdBGG-eY4mCMo4oOQltgI3O81W7sLduiD5fcJcUfK-QiZ58NTJMKENcsW8G7YaB9RbRF4iKtf-acwMkl-VmlR0mJPEOXJ_kPdHmGLi_Qq_fdc82qZ7B_nX8oV8H-IoD67E8PSWbjIRiwPlUm0kb_HzVPs-edRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954771665</pqid></control><display><type>article</type><title>Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide</title><source>ScienceDirect Freedom Collection</source><creator>Jeon, Je-Seung ; Cho, Gyeongjun ; Kim, Songhwa ; Riu, Myoungjoo ; Song, Jaekyeong</creator><creatorcontrib>Jeon, Je-Seung ; Cho, Gyeongjun ; Kim, Songhwa ; Riu, Myoungjoo ; Song, Jaekyeong</creatorcontrib><description>Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
[Display omitted]
•Microbial composition in diazinon-exposed microcosm soil were analyzed.•Selection pressure by diazinon orchestrated the flourishing of the phylum Actinomycetota.•Network analysis revealed that the phylum Actinomycetota pose a central role within the microbial community.•Among diazinon-biodegradable-bacteria isolates, the largest proportion (70%) were affiliated with the phylum Actinomycetota.•Microbiome study at the site of pesticides exposure is a promising strategy in finding elite pesticide-biodegrading microbes.</description><identifier>ISSN: 0045-6535</identifier><identifier>EISSN: 1879-1298</identifier><identifier>DOI: 10.1016/j.chemosphere.2024.141583</identifier><identifier>PMID: 38460853</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Actinomycetota ; Bioremediation ; Diazinon ; Microbiome ; Next generation sequencing (NGS) ; Organophosphorus insecticide</subject><ispartof>Chemosphere (Oxford), 2024-04, Vol.354, p.141583-141583, Article 141583</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3</citedby><cites>FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3</cites><orcidid>0000-0001-5079-6367 ; 0000-0002-3553-6660 ; 0000-0002-6215-3171</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38460853$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jeon, Je-Seung</creatorcontrib><creatorcontrib>Cho, Gyeongjun</creatorcontrib><creatorcontrib>Kim, Songhwa</creatorcontrib><creatorcontrib>Riu, Myoungjoo</creatorcontrib><creatorcontrib>Song, Jaekyeong</creatorcontrib><title>Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide</title><title>Chemosphere (Oxford)</title><addtitle>Chemosphere</addtitle><description>Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
[Display omitted]
•Microbial composition in diazinon-exposed microcosm soil were analyzed.•Selection pressure by diazinon orchestrated the flourishing of the phylum Actinomycetota.•Network analysis revealed that the phylum Actinomycetota pose a central role within the microbial community.•Among diazinon-biodegradable-bacteria isolates, the largest proportion (70%) were affiliated with the phylum Actinomycetota.•Microbiome study at the site of pesticides exposure is a promising strategy in finding elite pesticide-biodegrading microbes.</description><subject>Actinomycetota</subject><subject>Bioremediation</subject><subject>Diazinon</subject><subject>Microbiome</subject><subject>Next generation sequencing (NGS)</subject><subject>Organophosphorus insecticide</subject><issn>0045-6535</issn><issn>1879-1298</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNkEtv1DAQxy1ERZeFr4DMjQPZ2nGcxMdqVR5SJS7lbPkx3vUqsYPtIMqnr1dbEEdOo5H-j5kfQu8p2VFC-5vTzhxhjnk5QoJdS9puRzvKR_YCbeg4iIa2YnyJNoR0vOk549fodc4nQqqZi1fomo1dT0bONqjcmuJDnB8NlFjUR6ywgVCSmrCJIRdf1rri2ZsUNWC7Jh8OeIrh0BRIM4ZfS8xrAlwitl79rlmhhgQc00GFuBzPV8a0ZuxDhtplvIU36MqpKcPb57lF3z_dPey_NPffPn_d3943phVtadzYaU40YXoAZljXt_1oBIXBDdp2vdBGG-eY4mCMo4oOQltgI3O81W7sLduiD5fcJcUfK-QiZ58NTJMKENcsW8G7YaB9RbRF4iKtf-acwMkl-VmlR0mJPEOXJ_kPdHmGLi_Qq_fdc82qZ7B_nX8oV8H-IoD67E8PSWbjIRiwPlUm0kb_HzVPs-edRw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Jeon, Je-Seung</creator><creator>Cho, Gyeongjun</creator><creator>Kim, Songhwa</creator><creator>Riu, Myoungjoo</creator><creator>Song, Jaekyeong</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5079-6367</orcidid><orcidid>https://orcid.org/0000-0002-3553-6660</orcidid><orcidid>https://orcid.org/0000-0002-6215-3171</orcidid></search><sort><creationdate>20240401</creationdate><title>Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide</title><author>Jeon, Je-Seung ; Cho, Gyeongjun ; Kim, Songhwa ; Riu, Myoungjoo ; Song, Jaekyeong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Actinomycetota</topic><topic>Bioremediation</topic><topic>Diazinon</topic><topic>Microbiome</topic><topic>Next generation sequencing (NGS)</topic><topic>Organophosphorus insecticide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeon, Je-Seung</creatorcontrib><creatorcontrib>Cho, Gyeongjun</creatorcontrib><creatorcontrib>Kim, Songhwa</creatorcontrib><creatorcontrib>Riu, Myoungjoo</creatorcontrib><creatorcontrib>Song, Jaekyeong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Chemosphere (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeon, Je-Seung</au><au>Cho, Gyeongjun</au><au>Kim, Songhwa</au><au>Riu, Myoungjoo</au><au>Song, Jaekyeong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide</atitle><jtitle>Chemosphere (Oxford)</jtitle><addtitle>Chemosphere</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>354</volume><spage>141583</spage><epage>141583</epage><pages>141583-141583</pages><artnum>141583</artnum><issn>0045-6535</issn><eissn>1879-1298</eissn><abstract>Microbial biodegradation is a primary pesticide remediation pathway. Despite diazinon is one of the most frequently used organophosphate insecticides worldwide, its effect on soil microbial community remains obscure. We hypothesize that diazinon exposure reshapes microbial community, among them increased microbes may play a crucial role in diazinon degradation. To investigate this, we collected soil from an organic farming environment, introduced diazinon, cultivated it in a greenhouse, and then assessed its effects on soil microbiomes at three distinct time points: 20, 40, and 270 days after treatment (DAT). Results from HPLC showed that the level of diazinon was gradually degraded by 98.8% at 270 DAT when compared with day zero, whereas 16S rRNA gene analysis exhibited a significant reduction in the bacterial diversity, especially at the early two time points, indicating that diazinon may exert selection pressure to the bacteria community. Here, the relative abundance of phylum Actinomycetota increased at 20 and 40 DATs. In addition, the bacterial functional gene profile employing PICRUSt2 prediction also revealed that diazinon exposure induced the genomic function related to xenobiotics biodegradation and metabolism in soil, such as CYB5B, hpaC, acrR, and ppkA. To validate if bacterial function is caused by increased relative abundance in diazinon enriched soil, further bacteria isolation resulted in obtaining 25 diazinon degradation strains out of 103 isolates. Notably, more than 70% (18 out of 25) isolates are identified as phylum Actinomycetota, which empirically confirms and correlates microbiome and PICRUSt2 results. In conclusion, this study provides comprehensive information from microbiome analysis to obtaining several bacteria isolates responsible for diazinon degradation, revealing that the phylum Actinomycetota is as a key taxon that facilitates microbial biodegradation in diazinon spoiled soil. This finding may assist in developing a strategy for microbial detoxification of diazinon, such as using an Actinomycetota rich synthetic community (SynCom).
[Display omitted]
•Microbial composition in diazinon-exposed microcosm soil were analyzed.•Selection pressure by diazinon orchestrated the flourishing of the phylum Actinomycetota.•Network analysis revealed that the phylum Actinomycetota pose a central role within the microbial community.•Among diazinon-biodegradable-bacteria isolates, the largest proportion (70%) were affiliated with the phylum Actinomycetota.•Microbiome study at the site of pesticides exposure is a promising strategy in finding elite pesticide-biodegrading microbes.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38460853</pmid><doi>10.1016/j.chemosphere.2024.141583</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5079-6367</orcidid><orcidid>https://orcid.org/0000-0002-3553-6660</orcidid><orcidid>https://orcid.org/0000-0002-6215-3171</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-6535 |
ispartof | Chemosphere (Oxford), 2024-04, Vol.354, p.141583-141583, Article 141583 |
issn | 0045-6535 1879-1298 |
language | eng |
recordid | cdi_proquest_miscellaneous_2954771665 |
source | ScienceDirect Freedom Collection |
subjects | Actinomycetota Bioremediation Diazinon Microbiome Next generation sequencing (NGS) Organophosphorus insecticide |
title | Actinomycetota, a central constituent microbe during long-term exposure to diazinon, an organophosphorus insecticide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Actinomycetota,%20a%20central%20constituent%20microbe%20during%20long-term%20exposure%20to%20diazinon,%20an%20organophosphorus%20insecticide&rft.jtitle=Chemosphere%20(Oxford)&rft.au=Jeon,%20Je-Seung&rft.date=2024-04-01&rft.volume=354&rft.spage=141583&rft.epage=141583&rft.pages=141583-141583&rft.artnum=141583&rft.issn=0045-6535&rft.eissn=1879-1298&rft_id=info:doi/10.1016/j.chemosphere.2024.141583&rft_dat=%3Cproquest_cross%3E2954771665%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f84b50b03b7e3c346268c91e7f7bd469bcbcff3a5eccf1a179bde383f52bf86d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954771665&rft_id=info:pmid/38460853&rfr_iscdi=true |