Loading…
Electrochemical DNA-based sensors for measuring cell-generated forces
Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surfac...
Saved in:
Published in: | Biosensors & bioelectronics 2024-06, Vol.253, p.116185-116185, Article 116185 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mechanical forces play an important role in cellular communication and signaling. We developed in this study novel electrochemical DNA-based force sensors for measuring cell-generated adhesion forces. Two types of DNA probes, i.e., tension gauge tether and DNA hairpin, were constructed on the surface of a smartphone-based electrochemical device to detect piconewton-scale cellular forces at tunable levels. Upon experiencing cellular tension, the unfolding of DNA probes induces the separation of redox reporters from the surface of the electrode, which results in detectable electrochemical signals. Using integrin-mediated cell adhesion as an example, our results indicated that these electrochemical sensors can be used for highly sensitive, robust, simple, and portable measurements of cell-generated forces.
[Display omitted] |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/j.bios.2024.116185 |