Loading…
Proteostatic tuning underpins the evolution of novel multicellular traits
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE)....
Saved in:
Published in: | Science advances 2024-03, Vol.10 (10), p.eadn2706-eadn2706 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493 |
container_end_page | eadn2706 |
container_issue | 10 |
container_start_page | eadn2706 |
container_title | Science advances |
container_volume | 10 |
creator | Montrose, Kristopher Lac, Dung T Burnetti, Anthony J Tong, Kai Bozdag, G Ozan Hukkanen, Mikaela Ratcliff, William C Saarikangas, Juha |
description | The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes. |
doi_str_mv | 10.1126/sciadv.adn2706 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954776686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMottRuXUqWbqbmPZmlFB-Fgi50PWQmdzQyTWoeBf-9lVZxde7iu4fDh9AlJQtKmbpJvTN2tzDWs5qoEzRlvJYVk0Kf_rsnaJ7SByGECqUkbc7RhGsha0nqKVo9x5AhpGyy63Eu3vk3XLyFuHU-4fwOGHZhLNkFj8OAfdjBiDdl3OMwjmU0EedoXE4X6GwwY4L5MWfo9f7uZflYrZ8eVsvbddWzhuSqU5wQpY2QlA61tnYAZjVAw3gPTBlhrRWcd70iqhPUNEZp2VnotLSiEw2foetD7zaGzwIptxuXfrYYD6GkljVS1LVSWu3RxQHtY0gpwtBuo9uY-NVS0v4YbA8G26PB_cPVsbt0G7B_-K8v_g3HzG_p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954776686</pqid></control><display><type>article</type><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</creator><creatorcontrib>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</creatorcontrib><description>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn2706</identifier><identifier>PMID: 38457507</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Evolution ; HSP90 Heat-Shock Proteins - metabolism ; Mitosis ; Phenotype ; Protein Folding</subject><ispartof>Science advances, 2024-03, Vol.10 (10), p.eadn2706-eadn2706</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</cites><orcidid>0000-0002-1392-5921 ; 0000-0002-4665-2544 ; 0000-0002-6837-8355 ; 0000-0002-0931-2399 ; 0000-0002-8574-8274 ; 0000-0003-3856-8251 ; 0009-0009-8480-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montrose, Kristopher</creatorcontrib><creatorcontrib>Lac, Dung T</creatorcontrib><creatorcontrib>Burnetti, Anthony J</creatorcontrib><creatorcontrib>Tong, Kai</creatorcontrib><creatorcontrib>Bozdag, G Ozan</creatorcontrib><creatorcontrib>Hukkanen, Mikaela</creatorcontrib><creatorcontrib>Ratcliff, William C</creatorcontrib><creatorcontrib>Saarikangas, Juha</creatorcontrib><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</description><subject>Biological Evolution</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Mitosis</subject><subject>Phenotype</subject><subject>Protein Folding</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMottRuXUqWbqbmPZmlFB-Fgi50PWQmdzQyTWoeBf-9lVZxde7iu4fDh9AlJQtKmbpJvTN2tzDWs5qoEzRlvJYVk0Kf_rsnaJ7SByGECqUkbc7RhGsha0nqKVo9x5AhpGyy63Eu3vk3XLyFuHU-4fwOGHZhLNkFj8OAfdjBiDdl3OMwjmU0EedoXE4X6GwwY4L5MWfo9f7uZflYrZ8eVsvbddWzhuSqU5wQpY2QlA61tnYAZjVAw3gPTBlhrRWcd70iqhPUNEZp2VnotLSiEw2foetD7zaGzwIptxuXfrYYD6GkljVS1LVSWu3RxQHtY0gpwtBuo9uY-NVS0v4YbA8G26PB_cPVsbt0G7B_-K8v_g3HzG_p</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Montrose, Kristopher</creator><creator>Lac, Dung T</creator><creator>Burnetti, Anthony J</creator><creator>Tong, Kai</creator><creator>Bozdag, G Ozan</creator><creator>Hukkanen, Mikaela</creator><creator>Ratcliff, William C</creator><creator>Saarikangas, Juha</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1392-5921</orcidid><orcidid>https://orcid.org/0000-0002-4665-2544</orcidid><orcidid>https://orcid.org/0000-0002-6837-8355</orcidid><orcidid>https://orcid.org/0000-0002-0931-2399</orcidid><orcidid>https://orcid.org/0000-0002-8574-8274</orcidid><orcidid>https://orcid.org/0000-0003-3856-8251</orcidid><orcidid>https://orcid.org/0009-0009-8480-7701</orcidid></search><sort><creationdate>20240308</creationdate><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><author>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological Evolution</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Mitosis</topic><topic>Phenotype</topic><topic>Protein Folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montrose, Kristopher</creatorcontrib><creatorcontrib>Lac, Dung T</creatorcontrib><creatorcontrib>Burnetti, Anthony J</creatorcontrib><creatorcontrib>Tong, Kai</creatorcontrib><creatorcontrib>Bozdag, G Ozan</creatorcontrib><creatorcontrib>Hukkanen, Mikaela</creatorcontrib><creatorcontrib>Ratcliff, William C</creatorcontrib><creatorcontrib>Saarikangas, Juha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montrose, Kristopher</au><au>Lac, Dung T</au><au>Burnetti, Anthony J</au><au>Tong, Kai</au><au>Bozdag, G Ozan</au><au>Hukkanen, Mikaela</au><au>Ratcliff, William C</au><au>Saarikangas, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteostatic tuning underpins the evolution of novel multicellular traits</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>eadn2706</spage><epage>eadn2706</epage><pages>eadn2706-eadn2706</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</abstract><cop>United States</cop><pmid>38457507</pmid><doi>10.1126/sciadv.adn2706</doi><orcidid>https://orcid.org/0000-0002-1392-5921</orcidid><orcidid>https://orcid.org/0000-0002-4665-2544</orcidid><orcidid>https://orcid.org/0000-0002-6837-8355</orcidid><orcidid>https://orcid.org/0000-0002-0931-2399</orcidid><orcidid>https://orcid.org/0000-0002-8574-8274</orcidid><orcidid>https://orcid.org/0000-0003-3856-8251</orcidid><orcidid>https://orcid.org/0009-0009-8480-7701</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2024-03, Vol.10 (10), p.eadn2706-eadn2706 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_2954776686 |
source | American Association for the Advancement of Science; PubMed Central |
subjects | Biological Evolution HSP90 Heat-Shock Proteins - metabolism Mitosis Phenotype Protein Folding |
title | Proteostatic tuning underpins the evolution of novel multicellular traits |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteostatic%20tuning%20underpins%20the%20evolution%20of%20novel%20multicellular%20traits&rft.jtitle=Science%20advances&rft.au=Montrose,%20Kristopher&rft.date=2024-03-08&rft.volume=10&rft.issue=10&rft.spage=eadn2706&rft.epage=eadn2706&rft.pages=eadn2706-eadn2706&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn2706&rft_dat=%3Cproquest_cross%3E2954776686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954776686&rft_id=info:pmid/38457507&rfr_iscdi=true |