Loading…

Proteostatic tuning underpins the evolution of novel multicellular traits

The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE)....

Full description

Saved in:
Bibliographic Details
Published in:Science advances 2024-03, Vol.10 (10), p.eadn2706-eadn2706
Main Authors: Montrose, Kristopher, Lac, Dung T, Burnetti, Anthony J, Tong, Kai, Bozdag, G Ozan, Hukkanen, Mikaela, Ratcliff, William C, Saarikangas, Juha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493
container_end_page eadn2706
container_issue 10
container_start_page eadn2706
container_title Science advances
container_volume 10
creator Montrose, Kristopher
Lac, Dung T
Burnetti, Anthony J
Tong, Kai
Bozdag, G Ozan
Hukkanen, Mikaela
Ratcliff, William C
Saarikangas, Juha
description The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
doi_str_mv 10.1126/sciadv.adn2706
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2954776686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954776686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMottRuXUqWbqbmPZmlFB-Fgi50PWQmdzQyTWoeBf-9lVZxde7iu4fDh9AlJQtKmbpJvTN2tzDWs5qoEzRlvJYVk0Kf_rsnaJ7SByGECqUkbc7RhGsha0nqKVo9x5AhpGyy63Eu3vk3XLyFuHU-4fwOGHZhLNkFj8OAfdjBiDdl3OMwjmU0EedoXE4X6GwwY4L5MWfo9f7uZflYrZ8eVsvbddWzhuSqU5wQpY2QlA61tnYAZjVAw3gPTBlhrRWcd70iqhPUNEZp2VnotLSiEw2foetD7zaGzwIptxuXfrYYD6GkljVS1LVSWu3RxQHtY0gpwtBuo9uY-NVS0v4YbA8G26PB_cPVsbt0G7B_-K8v_g3HzG_p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954776686</pqid></control><display><type>article</type><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><source>American Association for the Advancement of Science</source><source>PubMed Central</source><creator>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</creator><creatorcontrib>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</creatorcontrib><description>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.adn2706</identifier><identifier>PMID: 38457507</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Evolution ; HSP90 Heat-Shock Proteins - metabolism ; Mitosis ; Phenotype ; Protein Folding</subject><ispartof>Science advances, 2024-03, Vol.10 (10), p.eadn2706-eadn2706</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</cites><orcidid>0000-0002-1392-5921 ; 0000-0002-4665-2544 ; 0000-0002-6837-8355 ; 0000-0002-0931-2399 ; 0000-0002-8574-8274 ; 0000-0003-3856-8251 ; 0009-0009-8480-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38457507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Montrose, Kristopher</creatorcontrib><creatorcontrib>Lac, Dung T</creatorcontrib><creatorcontrib>Burnetti, Anthony J</creatorcontrib><creatorcontrib>Tong, Kai</creatorcontrib><creatorcontrib>Bozdag, G Ozan</creatorcontrib><creatorcontrib>Hukkanen, Mikaela</creatorcontrib><creatorcontrib>Ratcliff, William C</creatorcontrib><creatorcontrib>Saarikangas, Juha</creatorcontrib><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><title>Science advances</title><addtitle>Sci Adv</addtitle><description>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</description><subject>Biological Evolution</subject><subject>HSP90 Heat-Shock Proteins - metabolism</subject><subject>Mitosis</subject><subject>Phenotype</subject><subject>Protein Folding</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMottRuXUqWbqbmPZmlFB-Fgi50PWQmdzQyTWoeBf-9lVZxde7iu4fDh9AlJQtKmbpJvTN2tzDWs5qoEzRlvJYVk0Kf_rsnaJ7SByGECqUkbc7RhGsha0nqKVo9x5AhpGyy63Eu3vk3XLyFuHU-4fwOGHZhLNkFj8OAfdjBiDdl3OMwjmU0EedoXE4X6GwwY4L5MWfo9f7uZflYrZ8eVsvbddWzhuSqU5wQpY2QlA61tnYAZjVAw3gPTBlhrRWcd70iqhPUNEZp2VnotLSiEw2foetD7zaGzwIptxuXfrYYD6GkljVS1LVSWu3RxQHtY0gpwtBuo9uY-NVS0v4YbA8G26PB_cPVsbt0G7B_-K8v_g3HzG_p</recordid><startdate>20240308</startdate><enddate>20240308</enddate><creator>Montrose, Kristopher</creator><creator>Lac, Dung T</creator><creator>Burnetti, Anthony J</creator><creator>Tong, Kai</creator><creator>Bozdag, G Ozan</creator><creator>Hukkanen, Mikaela</creator><creator>Ratcliff, William C</creator><creator>Saarikangas, Juha</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1392-5921</orcidid><orcidid>https://orcid.org/0000-0002-4665-2544</orcidid><orcidid>https://orcid.org/0000-0002-6837-8355</orcidid><orcidid>https://orcid.org/0000-0002-0931-2399</orcidid><orcidid>https://orcid.org/0000-0002-8574-8274</orcidid><orcidid>https://orcid.org/0000-0003-3856-8251</orcidid><orcidid>https://orcid.org/0009-0009-8480-7701</orcidid></search><sort><creationdate>20240308</creationdate><title>Proteostatic tuning underpins the evolution of novel multicellular traits</title><author>Montrose, Kristopher ; Lac, Dung T ; Burnetti, Anthony J ; Tong, Kai ; Bozdag, G Ozan ; Hukkanen, Mikaela ; Ratcliff, William C ; Saarikangas, Juha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biological Evolution</topic><topic>HSP90 Heat-Shock Proteins - metabolism</topic><topic>Mitosis</topic><topic>Phenotype</topic><topic>Protein Folding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montrose, Kristopher</creatorcontrib><creatorcontrib>Lac, Dung T</creatorcontrib><creatorcontrib>Burnetti, Anthony J</creatorcontrib><creatorcontrib>Tong, Kai</creatorcontrib><creatorcontrib>Bozdag, G Ozan</creatorcontrib><creatorcontrib>Hukkanen, Mikaela</creatorcontrib><creatorcontrib>Ratcliff, William C</creatorcontrib><creatorcontrib>Saarikangas, Juha</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montrose, Kristopher</au><au>Lac, Dung T</au><au>Burnetti, Anthony J</au><au>Tong, Kai</au><au>Bozdag, G Ozan</au><au>Hukkanen, Mikaela</au><au>Ratcliff, William C</au><au>Saarikangas, Juha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteostatic tuning underpins the evolution of novel multicellular traits</atitle><jtitle>Science advances</jtitle><addtitle>Sci Adv</addtitle><date>2024-03-08</date><risdate>2024</risdate><volume>10</volume><issue>10</issue><spage>eadn2706</spage><epage>eadn2706</epage><pages>eadn2706-eadn2706</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.</abstract><cop>United States</cop><pmid>38457507</pmid><doi>10.1126/sciadv.adn2706</doi><orcidid>https://orcid.org/0000-0002-1392-5921</orcidid><orcidid>https://orcid.org/0000-0002-4665-2544</orcidid><orcidid>https://orcid.org/0000-0002-6837-8355</orcidid><orcidid>https://orcid.org/0000-0002-0931-2399</orcidid><orcidid>https://orcid.org/0000-0002-8574-8274</orcidid><orcidid>https://orcid.org/0000-0003-3856-8251</orcidid><orcidid>https://orcid.org/0009-0009-8480-7701</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2024-03, Vol.10 (10), p.eadn2706-eadn2706
issn 2375-2548
2375-2548
language eng
recordid cdi_proquest_miscellaneous_2954776686
source American Association for the Advancement of Science; PubMed Central
subjects Biological Evolution
HSP90 Heat-Shock Proteins - metabolism
Mitosis
Phenotype
Protein Folding
title Proteostatic tuning underpins the evolution of novel multicellular traits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A39%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteostatic%20tuning%20underpins%20the%20evolution%20of%20novel%20multicellular%20traits&rft.jtitle=Science%20advances&rft.au=Montrose,%20Kristopher&rft.date=2024-03-08&rft.volume=10&rft.issue=10&rft.spage=eadn2706&rft.epage=eadn2706&rft.pages=eadn2706-eadn2706&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.adn2706&rft_dat=%3Cproquest_cross%3E2954776686%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-b630068a4511f78ddfe2d8ee923ce26a4ddd433bc606b41a9a685bdeb85d4b493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2954776686&rft_id=info:pmid/38457507&rfr_iscdi=true