Loading…
Enhanced degradation of enoxacin using ferrihydrite-catalyzed heterogeneous photo-Fenton process
The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that th...
Saved in:
Published in: | Environmental research 2024-06, Vol.251 (Pt 1), p.118650, Article 118650 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ferrihydrite-catalyzed heterogeneous photo-Fenton reaction shows great potential for environmental remediation of fluoroquinolone (FQs) antibiotics. The degradation of enoxacin, a model of FQ antibiotics, was studied by a batch experiment and theoretical calculation. The results revealed that the degradation efficiency of enoxacin reached 89.7% at pH 3. The hydroxyl radical (∙OH) had a significant impact on the degradation process, with a cumulative concentration of 43.9 μmol L−1 at pH 3. Photogenerated holes and electrons participated in the generation of ∙OH. Eleven degradation products of enoxacin were identified, with the main degradation pathways being defluorination, quinolone ring and piperazine ring cleavage and oxidation. These findings indicate that the ferrihydrite-catalyzed photo-Fenton process is a valid way for treating water contaminated with FQ antibiotics.
[Display omitted]
•The degradation of enoxacin was the same under acidic and alkaline conditions.•Photogenerated electrons and holes participated in the formation of ∙OH.•All the products undergo hydroxylation.•Most transformation products were less toxic than the parent enoxacin. |
---|---|
ISSN: | 0013-9351 1096-0953 1096-0953 |
DOI: | 10.1016/j.envres.2024.118650 |