Loading…

Poly(dimethylsiloxane)-polyimide blends in the formation of thick polyimide films

Thick polyimide layers can be formed by using some unique properties of poly(dimethylsiloxane)-polyimide (PDMS/PMDA–ODA) blends followed by surface modification and deposition of a second layer of polyimide precursor chemicals. The method is based on the micro-phase separation characteristics of the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2007-01, Vol.42 (1), p.239-251
Main Authors: MATIENZO, L. J, EGITTO, F. D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Thick polyimide layers can be formed by using some unique properties of poly(dimethylsiloxane)-polyimide (PDMS/PMDA–ODA) blends followed by surface modification and deposition of a second layer of polyimide precursor chemicals. The method is based on the micro-phase separation characteristics of these blends to yield surfaces that have PDMS-like character. Upon modification with UV/ozone treatment, a surface that is essentially SiOxand hydrophilic in nature is produced. This surface is amenable to reaction and deposition of a second polyimide layer from polyimide precursors. The thicker polyimide layer has enhanced adhesion between the original layer of the blend and the new polyimide layer and this approach finds extensive applications for products that require thick polymer layers. Changes in surface energy for various blend compositions were monitored by measurement of advancing contact angle with de-ionized water. Contact angle for unmodified polyimide films was on the order of 70° and it increased to about 104° after blending with PDMS and curing. UV/ozone treatment reduced the contact angle of the doped polyimide to less than 5°. X-ray photoelectron spectroscopy (XPS) and angle resolved XPS (ARXPS) measurements were used to monitor the chemical compositions of the various surfaces. High-resolution XPS spectra in the Si2p region confirm the transformation of O–Si–C bonds in PDMS to SiOx, where x is about 2. Scanning electron microscopy (SEM) of some selected samples shows that the blends contain phase separation of the polymers at the surfaces of the samples. Atomic force microscopy (AFM) of siloxane-free polyimide, and PDMS/PMDA–ODA blends both prior to and after UV/ozone exposure, show that the films are essentially flat at short treatment times (less than 60 min). AFM also reveals the separation of PDMS into micro-domains at the cured film surface and throughout the layer below the surface of the blended films. Adhesion of a subsequently deposited polyimide layer to the modified polyimide surface was found to be greatly improved when compared to the adhesion obtained for deposition onto a pristine polyimide surface.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-1060-1