Loading…

Investigating the characteristics of biomass wastes via particle feeder in downdraft gasifier

Particle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2024-07, Vol.252, p.118597-118597, Article 118597
Main Authors: Khan, Sameer, Adeyemi, Idowu, Moustakas, Konstantinos, Janajreh, Isam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Particle feeding plays a crucial role in the gasifier due to its effects on the efficiency and performance metrics of the thermochemical process. Investigating particle size distribution's impact on downdraft gasification reactor performance, this study delves into the significance of feedstock characteristics (moisture, volatile matter, fixed carbon, and ash contents) during the particle feeding stage. Various biomass wastes (date palm waste, olive pomace and sewage sludge) at diverse compositions and sizes are subjected to empirical determination of mass flow rates (MFR), power ratings, and storage times for each feedstock. The preheating process in the gasifier is considered, employing both an approximation and analytical solution. In addition, the influence of the equivalence ratio (ER) on the syngas yield is analyzed. The collected data reveals that for average particle size of 200 μm, the highest MFR (in g/min) are 0.518 ± 0.033, 7.691 ± 0.415, and 16.111 ± 1.050, for palm wood biomass, olive pomace and sewage sludge, respectively. Smaller particles (80 μm) led to extended storage times. Moreover, the lumped capacitance approximation method consistently underestimates preheating time, with a percentage error of 6.26%–17.08%. Response surface methodology (RSM) optimization analysis provides optimal gasification conditions for palm wood biomass, olive pomace, and sewage sludge with maximum cold gas efficiencies (CGEs) of 58.01%, 63.29%, and 52.27%. The peak conversion was attained at gasification temperatures of 1089.83 °C, 1151.93 °C, and 1102.91 °C for palm wood biomass, olive pomace, and sewage sludge, respectively. In addition, gasification equilibrium model determined optimal gasification temperatures as 1150 °C for palm biomass, 1200 °C for olive pomace, and 1150 °C for sewage sludge with respective syngas efficiencies of 59.62%, 64.13%, and 53.66%. Consequently, the examination of the dosing procedure, preheating dynamics, particle dimensions, ER, storage time, and their combined impacts offer practical insights to effectively control downdraft gasifiers in handling a variety of feedstocks. •The Influence of particle feeding on downdraft gasification is investigated•Lambda doser is used and gasifier flow rate, power rating, & storage time are tested•Different feedstock like palm wood, olive pomace and sewage sludge are evaluated•Optimal flow & power rating obtained at 200 μm particle size and 1000 rpm•Optimal temperature & corresponding syngas y
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2024.118597