Loading…

Heparanase interacting BCLAF1 to promote the development and drug resistance of ICC through the PERK/eIF2α pathway

Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β -glucuronidase in mammals. In addition to its well-established enzymatic roles...

Full description

Saved in:
Bibliographic Details
Published in:Cancer gene therapy 2024-06, Vol.31 (6), p.904-916
Main Authors: Yuan, Fengyan, Zhou, Huiqin, Liu, Chongyang, Wang, Yi, Quan, Jing, Liu, Jie, Li, Hao, von Itzstein, Mark, Yu, Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Intrahepatic cholangiocarcinoma (ICC) is a primary epithelial carcinoma known for its aggressive nature, high metastatic potential, frequent recurrence, and poor prognosis. Heparanase (HPSE) is the only known endogenous β -glucuronidase in mammals. In addition to its well-established enzymatic roles, HPSE critically exerts non-catalytic function in tumor biology. This study herein aimed to investigate the non-enzymatic roles of HPSE as well as relevant regulatory mechanisms in ICC. Our results demonstrated that HPSE was highly expressed in ICC and promoted the proliferation of ICC cells, with elevated HPSE levels implicating a poor overall survival of ICC patients. Notably, HPSE interacted with Bcl-2-associated factor 1 (BCLAF1) to upregulate the expression of Bcl-2, which subsequently activated the PERK/eIF2α-mediated endoplasmic reticulum (ER) stress pathway to promote anti-apoptotic effect of ICC. Moreover, our in vivo experiments revealed that concomitant administration of gemcitabine and the Bcl-2 inhibitor navitoclax enhanced the sensitivity of ICC cells with highly expressed HPSE to chemotherapy. In summary, our findings revealed that HPSE promoted the development and drug resistance of ICC via its non-enzymatic function. Bcl-2 may be considered as an effective target with therapeutic potential to overcome ICC chemotherapy resistance induced by HPSE, presenting valuable insights into the development of novel therapeutic strategies against ICC.
ISSN:0929-1903
1476-5500
1476-5500
DOI:10.1038/s41417-024-00754-y