Loading…

Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing

Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanoma...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (31), p.e2310013-n/a
Main Authors: Rani, Adila, Sultan, M. Junaid, Ren, Wanqi, Bag, Atanu, Lee, Ho Jin, Lee, Nae‐Eung, Kim, Tae Geun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3
cites cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3
container_end_page n/a
container_issue 31
container_start_page e2310013
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 20
creator Rani, Adila
Sultan, M. Junaid
Ren, Wanqi
Bag, Atanu
Lee, Ho Jin
Lee, Nae‐Eung
Kim, Tae Geun
description Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing. This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.
doi_str_mv 10.1002/smll.202310013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956682740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956682740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhokiQfPVNWNBIEsXO6ROEsXRMZI0gJ0GsDsTFE0lNChRJcUUzpSf0N_YX1IGdlygS6f7wHMv7u5F6JySMSUkuwytteOMZJAqCh_QMS0pjMoq4wf7nJIjdBLCmhCgWc4-oiOocsZKXh6j5yvjfr_-uutCb7xe4YcnN7igu-D8Bk_8YBqjjLR4selkHzS-kiFRrsM3sVODcZ205iV1ltra6E1s8TzawXjX64Ab5_G9jt61zvdPRuGpa_s4mO7xDB020gb9aRdP0feb6-X062j27fZuOpmNFDCAUcFqVVMGjGZUrQqioG4oVzlL3RwKXvCS1KqEDGRVAa8LUle85EByvpKcSzhFX7a6vXc_og6DaE1QaVfZaReDyHhRpmexnCT04h907aJP9wUBpEpfZAVAosZbSnkXgteN6L1ppd8ISsSbI-LNEbF3JA183snGutWrPf5uQQL4FvhprN78R04s5rPZX_E_x1qZvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086817533</pqid></control><display><type>article</type><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</creator><creatorcontrib>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</creatorcontrib><description>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing. This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310013</identifier><identifier>PMID: 38477696</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Controllability ; defected TeSOx and TeSeOx structure ; Graphene ; Heterostructures ; Low voltage ; Luminous intensity ; Nanomaterials ; Nervous system ; Neuromorphic computing ; Optical properties ; photo‐synaptic devices ; Selenium oxides ; Sulfur oxides ; Synapses ; Te multiropes ; Tellurium ; Transistors ; Transition metal compounds ; Ultraviolet radiation ; Vapor deposition</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2310013-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</citedby><cites>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</cites><orcidid>0000-0001-6211-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38477696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rani, Adila</creatorcontrib><creatorcontrib>Sultan, M. Junaid</creatorcontrib><creatorcontrib>Ren, Wanqi</creatorcontrib><creatorcontrib>Bag, Atanu</creatorcontrib><creatorcontrib>Lee, Ho Jin</creatorcontrib><creatorcontrib>Lee, Nae‐Eung</creatorcontrib><creatorcontrib>Kim, Tae Geun</creatorcontrib><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing. This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</description><subject>Controllability</subject><subject>defected TeSOx and TeSeOx structure</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Low voltage</subject><subject>Luminous intensity</subject><subject>Nanomaterials</subject><subject>Nervous system</subject><subject>Neuromorphic computing</subject><subject>Optical properties</subject><subject>photo‐synaptic devices</subject><subject>Selenium oxides</subject><subject>Sulfur oxides</subject><subject>Synapses</subject><subject>Te multiropes</subject><subject>Tellurium</subject><subject>Transistors</subject><subject>Transition metal compounds</subject><subject>Ultraviolet radiation</subject><subject>Vapor deposition</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1v2zAQhokiQfPVNWNBIEsXO6ROEsXRMZI0gJ0GsDsTFE0lNChRJcUUzpSf0N_YX1IGdlygS6f7wHMv7u5F6JySMSUkuwytteOMZJAqCh_QMS0pjMoq4wf7nJIjdBLCmhCgWc4-oiOocsZKXh6j5yvjfr_-uutCb7xe4YcnN7igu-D8Bk_8YBqjjLR4selkHzS-kiFRrsM3sVODcZ205iV1ltra6E1s8TzawXjX64Ab5_G9jt61zvdPRuGpa_s4mO7xDB020gb9aRdP0feb6-X062j27fZuOpmNFDCAUcFqVVMGjGZUrQqioG4oVzlL3RwKXvCS1KqEDGRVAa8LUle85EByvpKcSzhFX7a6vXc_og6DaE1QaVfZaReDyHhRpmexnCT04h907aJP9wUBpEpfZAVAosZbSnkXgteN6L1ppd8ISsSbI-LNEbF3JA183snGutWrPf5uQQL4FvhprN78R04s5rPZX_E_x1qZvA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rani, Adila</creator><creator>Sultan, M. Junaid</creator><creator>Ren, Wanqi</creator><creator>Bag, Atanu</creator><creator>Lee, Ho Jin</creator><creator>Lee, Nae‐Eung</creator><creator>Kim, Tae Geun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6211-1134</orcidid></search><sort><creationdate>20240801</creationdate><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><author>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>defected TeSOx and TeSeOx structure</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Low voltage</topic><topic>Luminous intensity</topic><topic>Nanomaterials</topic><topic>Nervous system</topic><topic>Neuromorphic computing</topic><topic>Optical properties</topic><topic>photo‐synaptic devices</topic><topic>Selenium oxides</topic><topic>Sulfur oxides</topic><topic>Synapses</topic><topic>Te multiropes</topic><topic>Tellurium</topic><topic>Transistors</topic><topic>Transition metal compounds</topic><topic>Ultraviolet radiation</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Adila</creatorcontrib><creatorcontrib>Sultan, M. Junaid</creatorcontrib><creatorcontrib>Ren, Wanqi</creatorcontrib><creatorcontrib>Bag, Atanu</creatorcontrib><creatorcontrib>Lee, Ho Jin</creatorcontrib><creatorcontrib>Lee, Nae‐Eung</creatorcontrib><creatorcontrib>Kim, Tae Geun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Adila</au><au>Sultan, M. Junaid</au><au>Ren, Wanqi</au><au>Bag, Atanu</au><au>Lee, Ho Jin</au><au>Lee, Nae‐Eung</au><au>Kim, Tae Geun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>31</issue><spage>e2310013</spage><epage>n/a</epage><pages>e2310013-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing. This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38477696</pmid><doi>10.1002/smll.202310013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6211-1134</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2310013-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2956682740
source Wiley-Blackwell Read & Publish Collection
subjects Controllability
defected TeSOx and TeSeOx structure
Graphene
Heterostructures
Low voltage
Luminous intensity
Nanomaterials
Nervous system
Neuromorphic computing
Optical properties
photo‐synaptic devices
Selenium oxides
Sulfur oxides
Synapses
Te multiropes
Tellurium
Transistors
Transition metal compounds
Ultraviolet radiation
Vapor deposition
title Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90Inspired%20Photosensory%20Artificial%20Synapse%20Based%20on%20Functionalized%20Tellurium%20Multiropes%20for%20Neuromorphic%20Computing&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rani,%20Adila&rft.date=2024-08-01&rft.volume=20&rft.issue=31&rft.spage=e2310013&rft.epage=n/a&rft.pages=e2310013-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310013&rft_dat=%3Cproquest_cross%3E2956682740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086817533&rft_id=info:pmid/38477696&rfr_iscdi=true