Loading…
Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing
Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanoma...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2024-08, Vol.20 (31), p.e2310013-n/a |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3 |
container_end_page | n/a |
container_issue | 31 |
container_start_page | e2310013 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 20 |
creator | Rani, Adila Sultan, M. Junaid Ren, Wanqi Bag, Atanu Lee, Ho Jin Lee, Nae‐Eung Kim, Tae Geun |
description | Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing.
This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity. |
doi_str_mv | 10.1002/smll.202310013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2956682740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2956682740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</originalsourceid><addsrcrecordid>eNqFkT1v2zAQhokiQfPVNWNBIEsXO6ROEsXRMZI0gJ0GsDsTFE0lNChRJcUUzpSf0N_YX1IGdlygS6f7wHMv7u5F6JySMSUkuwytteOMZJAqCh_QMS0pjMoq4wf7nJIjdBLCmhCgWc4-oiOocsZKXh6j5yvjfr_-uutCb7xe4YcnN7igu-D8Bk_8YBqjjLR4selkHzS-kiFRrsM3sVODcZ205iV1ltra6E1s8TzawXjX64Ab5_G9jt61zvdPRuGpa_s4mO7xDB020gb9aRdP0feb6-X062j27fZuOpmNFDCAUcFqVVMGjGZUrQqioG4oVzlL3RwKXvCS1KqEDGRVAa8LUle85EByvpKcSzhFX7a6vXc_og6DaE1QaVfZaReDyHhRpmexnCT04h907aJP9wUBpEpfZAVAosZbSnkXgteN6L1ppd8ISsSbI-LNEbF3JA183snGutWrPf5uQQL4FvhprN78R04s5rPZX_E_x1qZvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086817533</pqid></control><display><type>article</type><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</creator><creatorcontrib>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</creatorcontrib><description>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing.
This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202310013</identifier><identifier>PMID: 38477696</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Controllability ; defected TeSOx and TeSeOx structure ; Graphene ; Heterostructures ; Low voltage ; Luminous intensity ; Nanomaterials ; Nervous system ; Neuromorphic computing ; Optical properties ; photo‐synaptic devices ; Selenium oxides ; Sulfur oxides ; Synapses ; Te multiropes ; Tellurium ; Transistors ; Transition metal compounds ; Ultraviolet radiation ; Vapor deposition</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2310013-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</citedby><cites>FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</cites><orcidid>0000-0001-6211-1134</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38477696$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rani, Adila</creatorcontrib><creatorcontrib>Sultan, M. Junaid</creatorcontrib><creatorcontrib>Ren, Wanqi</creatorcontrib><creatorcontrib>Bag, Atanu</creatorcontrib><creatorcontrib>Lee, Ho Jin</creatorcontrib><creatorcontrib>Lee, Nae‐Eung</creatorcontrib><creatorcontrib>Kim, Tae Geun</creatorcontrib><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing.
This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</description><subject>Controllability</subject><subject>defected TeSOx and TeSeOx structure</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>Low voltage</subject><subject>Luminous intensity</subject><subject>Nanomaterials</subject><subject>Nervous system</subject><subject>Neuromorphic computing</subject><subject>Optical properties</subject><subject>photo‐synaptic devices</subject><subject>Selenium oxides</subject><subject>Sulfur oxides</subject><subject>Synapses</subject><subject>Te multiropes</subject><subject>Tellurium</subject><subject>Transistors</subject><subject>Transition metal compounds</subject><subject>Ultraviolet radiation</subject><subject>Vapor deposition</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkT1v2zAQhokiQfPVNWNBIEsXO6ROEsXRMZI0gJ0GsDsTFE0lNChRJcUUzpSf0N_YX1IGdlygS6f7wHMv7u5F6JySMSUkuwytteOMZJAqCh_QMS0pjMoq4wf7nJIjdBLCmhCgWc4-oiOocsZKXh6j5yvjfr_-uutCb7xe4YcnN7igu-D8Bk_8YBqjjLR4selkHzS-kiFRrsM3sVODcZ205iV1ltra6E1s8TzawXjX64Ab5_G9jt61zvdPRuGpa_s4mO7xDB020gb9aRdP0feb6-X062j27fZuOpmNFDCAUcFqVVMGjGZUrQqioG4oVzlL3RwKXvCS1KqEDGRVAa8LUle85EByvpKcSzhFX7a6vXc_og6DaE1QaVfZaReDyHhRpmexnCT04h907aJP9wUBpEpfZAVAosZbSnkXgteN6L1ppd8ISsSbI-LNEbF3JA183snGutWrPf5uQQL4FvhprN78R04s5rPZX_E_x1qZvA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Rani, Adila</creator><creator>Sultan, M. Junaid</creator><creator>Ren, Wanqi</creator><creator>Bag, Atanu</creator><creator>Lee, Ho Jin</creator><creator>Lee, Nae‐Eung</creator><creator>Kim, Tae Geun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6211-1134</orcidid></search><sort><creationdate>20240801</creationdate><title>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</title><author>Rani, Adila ; Sultan, M. Junaid ; Ren, Wanqi ; Bag, Atanu ; Lee, Ho Jin ; Lee, Nae‐Eung ; Kim, Tae Geun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Controllability</topic><topic>defected TeSOx and TeSeOx structure</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>Low voltage</topic><topic>Luminous intensity</topic><topic>Nanomaterials</topic><topic>Nervous system</topic><topic>Neuromorphic computing</topic><topic>Optical properties</topic><topic>photo‐synaptic devices</topic><topic>Selenium oxides</topic><topic>Sulfur oxides</topic><topic>Synapses</topic><topic>Te multiropes</topic><topic>Tellurium</topic><topic>Transistors</topic><topic>Transition metal compounds</topic><topic>Ultraviolet radiation</topic><topic>Vapor deposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rani, Adila</creatorcontrib><creatorcontrib>Sultan, M. Junaid</creatorcontrib><creatorcontrib>Ren, Wanqi</creatorcontrib><creatorcontrib>Bag, Atanu</creatorcontrib><creatorcontrib>Lee, Ho Jin</creatorcontrib><creatorcontrib>Lee, Nae‐Eung</creatorcontrib><creatorcontrib>Kim, Tae Geun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rani, Adila</au><au>Sultan, M. Junaid</au><au>Ren, Wanqi</au><au>Bag, Atanu</au><au>Lee, Ho Jin</au><au>Lee, Nae‐Eung</au><au>Kim, Tae Geun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>20</volume><issue>31</issue><spage>e2310013</spage><epage>n/a</epage><pages>e2310013-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low‐power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)‐based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo‐synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope‐based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope‐based transistor exhibits photosensory synaptic responses to UV–vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW−1 to 365 nm UV light. This result is among the highest reported for Te‐heterostructure‐based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm−2), potentially useful for optical neuromorphic computing.
This study explores the synthesis of Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx) nanomaterials via vapor deposition, highlighting their unique photo‐synaptic responses to different optical stimulations. Further, TeSeOx multiropes demonstrate their potential in optical neuromorphic computing through enhanced electrical performance and high responsivity achieved with low voltage and light intensity.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38477696</pmid><doi>10.1002/smll.202310013</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6211-1134</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2024-08, Vol.20 (31), p.e2310013-n/a |
issn | 1613-6810 1613-6829 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2956682740 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Controllability defected TeSOx and TeSeOx structure Graphene Heterostructures Low voltage Luminous intensity Nanomaterials Nervous system Neuromorphic computing Optical properties photo‐synaptic devices Selenium oxides Sulfur oxides Synapses Te multiropes Tellurium Transistors Transition metal compounds Ultraviolet radiation Vapor deposition |
title | Bio‐Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio%E2%80%90Inspired%20Photosensory%20Artificial%20Synapse%20Based%20on%20Functionalized%20Tellurium%20Multiropes%20for%20Neuromorphic%20Computing&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Rani,%20Adila&rft.date=2024-08-01&rft.volume=20&rft.issue=31&rft.spage=e2310013&rft.epage=n/a&rft.pages=e2310013-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202310013&rft_dat=%3Cproquest_cross%3E2956682740%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3733-57bcb1737121cd50c3bf19c47cb143595960bc6323a8839b50b89693049da99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3086817533&rft_id=info:pmid/38477696&rfr_iscdi=true |