Loading…

Py3BR: A software for computing atomic three‐body recombination rates

The three‐body recombination reaction, or ternary association, is a termolecular reaction leading to a molecule after a three‐body encounter that plays a vital role in many relevant scenarios in chemical physics. Here, we introduce the Python 3‐Body Recombination program, which is dedicated to the c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational chemistry 2024-06, Vol.45 (17), p.1505-1514
Main Authors: Koots, Rian, Wang, Yu, Mirahmadi, Marjan, Pérez‐Ríos, Jesús
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3
cites cdi_FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3
container_end_page 1514
container_issue 17
container_start_page 1505
container_title Journal of computational chemistry
container_volume 45
creator Koots, Rian
Wang, Yu
Mirahmadi, Marjan
Pérez‐Ríos, Jesús
description The three‐body recombination reaction, or ternary association, is a termolecular reaction leading to a molecule after a three‐body encounter that plays a vital role in many relevant scenarios in chemical physics. Here, we introduce the Python 3‐Body Recombination program, which is dedicated to the computation of atomic three‐body recombination rate coefficients. The software is based on a classical trajectory approach in hyperspherical coordinates after mapping the three‐body problem as a single particle in a higher‐dimensional space. This theoretical approach is fully general and applicable to any ion‐atom‐atom or atom‐atom‐atom three‐body process. The predictive power of the methodology has been tested in several different experimental scenarios, reaching a good description of every system. The code structure is presented alongside examples and tests to ensure the software's capacity. In addition, the performance of the software after parallelization is shown. Three‐body recombination reactions in which three free atoms collide to form a molecule and a free atom appear in a multitude of scenarios, from atmospheric phenomena to ultracold experiments. Python 3‐Body Recombination is a software for the classical simulation of direct three‐body recombination to further the limited theoretical understanding of these reactions.
doi_str_mv 10.1002/jcc.27341
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2958293406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958293406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3</originalsourceid><addsrcrecordid>eNp1kM1KxDAQgIMouv4cfAEpeNFD10nSNqm3dfEXQREFbyFNptpl26xJi-zNR_AZfRKru3oQPM1hvvkYPkJ2KQwpADuaGDNkgid0hQwo5FmcS_G4SgZAcxbLLKUbZDOECQDwNEvWyQaXiUwZlQNyfjvnJ3fH0SgKrmxftceodD4yrp51bdU8Rbp1dWWi9tkjfry9F87OI4_9vqga3VauibxuMWyTtVJPA-4s5xZ5ODu9H1_E1zfnl-PRdWx4ymlMM2HzRJSW24wVhlvNy0JkKEALIxmzKPPUUiu1ASEAEJGXIoGMcWpKXvAtcrDwzrx76TC0qq6CwelUN-i6oFieSpbz_qJH9_-gE9f5pv9OcUgphyyBvKcOF5TxLgSPpZr5qtZ-riior7qqr6u-6_bs3tLYFTXaX_InZw8cLYDXaorz_03qajxeKD8BN-uDKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3051306409</pqid></control><display><type>article</type><title>Py3BR: A software for computing atomic three‐body recombination rates</title><source>Wiley</source><creator>Koots, Rian ; Wang, Yu ; Mirahmadi, Marjan ; Pérez‐Ríos, Jesús</creator><creatorcontrib>Koots, Rian ; Wang, Yu ; Mirahmadi, Marjan ; Pérez‐Ríos, Jesús</creatorcontrib><description>The three‐body recombination reaction, or ternary association, is a termolecular reaction leading to a molecule after a three‐body encounter that plays a vital role in many relevant scenarios in chemical physics. Here, we introduce the Python 3‐Body Recombination program, which is dedicated to the computation of atomic three‐body recombination rate coefficients. The software is based on a classical trajectory approach in hyperspherical coordinates after mapping the three‐body problem as a single particle in a higher‐dimensional space. This theoretical approach is fully general and applicable to any ion‐atom‐atom or atom‐atom‐atom three‐body process. The predictive power of the methodology has been tested in several different experimental scenarios, reaching a good description of every system. The code structure is presented alongside examples and tests to ensure the software's capacity. In addition, the performance of the software after parallelization is shown. Three‐body recombination reactions in which three free atoms collide to form a molecule and a free atom appear in a multitude of scenarios, from atmospheric phenomena to ultracold experiments. Python 3‐Body Recombination is a software for the classical simulation of direct three‐body recombination to further the limited theoretical understanding of these reactions.</description><identifier>ISSN: 0192-8651</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27341</identifier><identifier>PMID: 38485218</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Classical Reaction Dynamics ; Recombination coefficient ; Recombination reactions ; Software ; Termolecular Reactions ; Three‐Body Recombination</subject><ispartof>Journal of computational chemistry, 2024-06, Vol.45 (17), p.1505-1514</ispartof><rights>2024 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3</citedby><cites>FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3</cites><orcidid>0000-0002-9020-532X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38485218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koots, Rian</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Mirahmadi, Marjan</creatorcontrib><creatorcontrib>Pérez‐Ríos, Jesús</creatorcontrib><title>Py3BR: A software for computing atomic three‐body recombination rates</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>The three‐body recombination reaction, or ternary association, is a termolecular reaction leading to a molecule after a three‐body encounter that plays a vital role in many relevant scenarios in chemical physics. Here, we introduce the Python 3‐Body Recombination program, which is dedicated to the computation of atomic three‐body recombination rate coefficients. The software is based on a classical trajectory approach in hyperspherical coordinates after mapping the three‐body problem as a single particle in a higher‐dimensional space. This theoretical approach is fully general and applicable to any ion‐atom‐atom or atom‐atom‐atom three‐body process. The predictive power of the methodology has been tested in several different experimental scenarios, reaching a good description of every system. The code structure is presented alongside examples and tests to ensure the software's capacity. In addition, the performance of the software after parallelization is shown. Three‐body recombination reactions in which three free atoms collide to form a molecule and a free atom appear in a multitude of scenarios, from atmospheric phenomena to ultracold experiments. Python 3‐Body Recombination is a software for the classical simulation of direct three‐body recombination to further the limited theoretical understanding of these reactions.</description><subject>Classical Reaction Dynamics</subject><subject>Recombination coefficient</subject><subject>Recombination reactions</subject><subject>Software</subject><subject>Termolecular Reactions</subject><subject>Three‐Body Recombination</subject><issn>0192-8651</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KxDAQgIMouv4cfAEpeNFD10nSNqm3dfEXQREFbyFNptpl26xJi-zNR_AZfRKru3oQPM1hvvkYPkJ2KQwpADuaGDNkgid0hQwo5FmcS_G4SgZAcxbLLKUbZDOECQDwNEvWyQaXiUwZlQNyfjvnJ3fH0SgKrmxftceodD4yrp51bdU8Rbp1dWWi9tkjfry9F87OI4_9vqga3VauibxuMWyTtVJPA-4s5xZ5ODu9H1_E1zfnl-PRdWx4ymlMM2HzRJSW24wVhlvNy0JkKEALIxmzKPPUUiu1ASEAEJGXIoGMcWpKXvAtcrDwzrx76TC0qq6CwelUN-i6oFieSpbz_qJH9_-gE9f5pv9OcUgphyyBvKcOF5TxLgSPpZr5qtZ-riior7qqr6u-6_bs3tLYFTXaX_InZw8cLYDXaorz_03qajxeKD8BN-uDKA</recordid><startdate>20240630</startdate><enddate>20240630</enddate><creator>Koots, Rian</creator><creator>Wang, Yu</creator><creator>Mirahmadi, Marjan</creator><creator>Pérez‐Ríos, Jesús</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></search><sort><creationdate>20240630</creationdate><title>Py3BR: A software for computing atomic three‐body recombination rates</title><author>Koots, Rian ; Wang, Yu ; Mirahmadi, Marjan ; Pérez‐Ríos, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classical Reaction Dynamics</topic><topic>Recombination coefficient</topic><topic>Recombination reactions</topic><topic>Software</topic><topic>Termolecular Reactions</topic><topic>Three‐Body Recombination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koots, Rian</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Mirahmadi, Marjan</creatorcontrib><creatorcontrib>Pérez‐Ríos, Jesús</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koots, Rian</au><au>Wang, Yu</au><au>Mirahmadi, Marjan</au><au>Pérez‐Ríos, Jesús</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Py3BR: A software for computing atomic three‐body recombination rates</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2024-06-30</date><risdate>2024</risdate><volume>45</volume><issue>17</issue><spage>1505</spage><epage>1514</epage><pages>1505-1514</pages><issn>0192-8651</issn><eissn>1096-987X</eissn><abstract>The three‐body recombination reaction, or ternary association, is a termolecular reaction leading to a molecule after a three‐body encounter that plays a vital role in many relevant scenarios in chemical physics. Here, we introduce the Python 3‐Body Recombination program, which is dedicated to the computation of atomic three‐body recombination rate coefficients. The software is based on a classical trajectory approach in hyperspherical coordinates after mapping the three‐body problem as a single particle in a higher‐dimensional space. This theoretical approach is fully general and applicable to any ion‐atom‐atom or atom‐atom‐atom three‐body process. The predictive power of the methodology has been tested in several different experimental scenarios, reaching a good description of every system. The code structure is presented alongside examples and tests to ensure the software's capacity. In addition, the performance of the software after parallelization is shown. Three‐body recombination reactions in which three free atoms collide to form a molecule and a free atom appear in a multitude of scenarios, from atmospheric phenomena to ultracold experiments. Python 3‐Body Recombination is a software for the classical simulation of direct three‐body recombination to further the limited theoretical understanding of these reactions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>38485218</pmid><doi>10.1002/jcc.27341</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9020-532X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2024-06, Vol.45 (17), p.1505-1514
issn 0192-8651
1096-987X
language eng
recordid cdi_proquest_miscellaneous_2958293406
source Wiley
subjects Classical Reaction Dynamics
Recombination coefficient
Recombination reactions
Software
Termolecular Reactions
Three‐Body Recombination
title Py3BR: A software for computing atomic three‐body recombination rates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T23%3A29%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Py3BR:%20A%20software%20for%20computing%20atomic%20three%E2%80%90body%20recombination%20rates&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Koots,%20Rian&rft.date=2024-06-30&rft.volume=45&rft.issue=17&rft.spage=1505&rft.epage=1514&rft.pages=1505-1514&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27341&rft_dat=%3Cproquest_cross%3E2958293406%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3531-167d947fd3d62bc3da3fb76e70a7c822de895d1d8ac07700eee3f7406231cf3b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3051306409&rft_id=info:pmid/38485218&rfr_iscdi=true