Loading…

Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods

Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone marrow between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee approved this retrospective study. From 148 patients,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of digital imaging 2024-10, Vol.37 (5), p.2454-2465
Main Authors: Cakir, Maide, Tulum, Gökalp, Cuce, Ferhat, Yilmaz, Kerim Bora, Aralasmak, Ayse, Isik, Muhammet İkbal, Canbolat, Hüseyin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c356t-4237254a0d29185f0045f40775be2cc6e1f364764e3e1a56aa96b5fc1848d7883
container_end_page 2465
container_issue 5
container_start_page 2454
container_title Journal of digital imaging
container_volume 37
creator Cakir, Maide
Tulum, Gökalp
Cuce, Ferhat
Yilmaz, Kerim Bora
Aralasmak, Ayse
Isik, Muhammet İkbal
Canbolat, Hüseyin
description Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone marrow between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee approved this retrospective study. From 148 patients, segmentation resulted in 679 labeled regions for T1-weighted images (comprising 151 CNO, 257 OM, and 271 TR) and 714 labeled regions for T2-weighted images (consisting of 160 CNO, 272 OM, and 282 TR). We employed both multi-class classification (MCC) and binary-class classification (BCC) approaches to compare the classification outcomes of CNO, TR, and OM. The ResNet-50 and the EfficientNet-b0 accuracy values were computed at 96.2% and 97.1%, respectively, for T1-weighted images. Additionally, accuracy values for ResNet-50 and the EfficientNet-b0 were determined at 95.6% and 96.8%, respectively, for T2-weighted images. Also, according to BCC for CNO, OM, and TR, the sensitivity of ResNet-50 is 91.1%, 92.4%, and 96.6% and the sensitivity of EfficientNet-b0 is 93.2%, 97.6%, and 98.1% for T1, respectively. For CNO, OM, and TR, the sensitivity of ResNet-50 is 94.9%, 83.6%, and 97.9% and the sensitivity of EfficientNet-b0 is 95.6%, 85.2%, and 98.6% for T2, respectively. The specificity values of ResNet-50 for CNO, OM, and TR in T1-weighted images are 98.1%, 97.9%, and 94.7% and 98.6%, 97.5%, and 96.7% in T2-weighted images respectively. Similarly, for EfficientNet-b0, the specificity values are 98.9%, 98.7%, and 98.4% and 99.1%, 98.5%, and 98.7% for T1-weighted and T2-weighted images respectively. In the diabetic foot, deep learning methods serve as a non-invasive tool to differentiate CNO, OM, and TR with high accuracy.
doi_str_mv 10.1007/s10278-024-01067-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2958294801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3121797906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4237254a0d29185f0045f40775be2cc6e1f364764e3e1a56aa96b5fc1848d7883</originalsourceid><addsrcrecordid>eNpdkUtv1DAUhSMEolXpH2CBIrFhE7h-JyuEZlpaaWg3ZW15nOuJq0w82A5o_n09nVIVVn6c7x75-FTVewKfCYD6kghQ1TZAeQMEpGrgVXVKO942tGPs9Yv9SXWe0j0AMEYYk_C2OmEt7whl_LTaL71zGHHK3oz10pvNFJJPdXCHwxqzt_VlCLm-TRnDdo-jz0U2U18vBhNtUW5wjmFn8lDQR8rEPBxv9vUfn4d6ibirV2ji5KdN_QPzEPr0rnrjzJjw_Gk9q35eXtwtrprV7ffrxbdVY5mQueGUKSq4gZ52pBUOgAvHQSmxRmqtROKY5EpyZEiMkMZ0ci2cJS1ve9W27Kz6evTdzest9rZEjWbUu-i3Ju51MF7_q0x-0JvwWxMiKKWcFYdPTw4x_JoxZb31yeI4mgnDnDTtRHv4bSAF_fgfeh_mOJV8mhFKVKc6kIWiR8rGkFJE9_waAvrQrj62q0u7-rFdDWXow8sczyN_u2QPkwWhKA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121797906</pqid></control><display><type>article</type><title>Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods</title><source>Springer Nature</source><source>PubMed Central</source><creator>Cakir, Maide ; Tulum, Gökalp ; Cuce, Ferhat ; Yilmaz, Kerim Bora ; Aralasmak, Ayse ; Isik, Muhammet İkbal ; Canbolat, Hüseyin</creator><creatorcontrib>Cakir, Maide ; Tulum, Gökalp ; Cuce, Ferhat ; Yilmaz, Kerim Bora ; Aralasmak, Ayse ; Isik, Muhammet İkbal ; Canbolat, Hüseyin</creatorcontrib><description>Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone marrow between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee approved this retrospective study. From 148 patients, segmentation resulted in 679 labeled regions for T1-weighted images (comprising 151 CNO, 257 OM, and 271 TR) and 714 labeled regions for T2-weighted images (consisting of 160 CNO, 272 OM, and 282 TR). We employed both multi-class classification (MCC) and binary-class classification (BCC) approaches to compare the classification outcomes of CNO, TR, and OM. The ResNet-50 and the EfficientNet-b0 accuracy values were computed at 96.2% and 97.1%, respectively, for T1-weighted images. Additionally, accuracy values for ResNet-50 and the EfficientNet-b0 were determined at 95.6% and 96.8%, respectively, for T2-weighted images. Also, according to BCC for CNO, OM, and TR, the sensitivity of ResNet-50 is 91.1%, 92.4%, and 96.6% and the sensitivity of EfficientNet-b0 is 93.2%, 97.6%, and 98.1% for T1, respectively. For CNO, OM, and TR, the sensitivity of ResNet-50 is 94.9%, 83.6%, and 97.9% and the sensitivity of EfficientNet-b0 is 95.6%, 85.2%, and 98.6% for T2, respectively. The specificity values of ResNet-50 for CNO, OM, and TR in T1-weighted images are 98.1%, 97.9%, and 94.7% and 98.6%, 97.5%, and 96.7% in T2-weighted images respectively. Similarly, for EfficientNet-b0, the specificity values are 98.9%, 98.7%, and 98.4% and 99.1%, 98.5%, and 98.7% for T1-weighted and T2-weighted images respectively. In the diabetic foot, deep learning methods serve as a non-invasive tool to differentiate CNO, OM, and TR with high accuracy.</description><identifier>ISSN: 2948-2933</identifier><identifier>ISSN: 0897-1889</identifier><identifier>ISSN: 2948-2925</identifier><identifier>EISSN: 2948-2933</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-024-01067-0</identifier><identifier>PMID: 38491234</identifier><language>eng</language><publisher>Switzerland: Springer Nature B.V</publisher><subject>Accuracy ; Algorithms ; Arthropathy, Neurogenic - diagnosis ; Arthropathy, Neurogenic - diagnostic imaging ; Bone marrow ; Classification ; Deep Learning ; Diabetes ; Diabetes mellitus ; Diabetic Foot - diagnosis ; Diabetic Foot - diagnostic imaging ; Diagnosis, Differential ; Differential diagnosis ; Female ; Foot diseases ; Humans ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Joint diseases ; Machine learning ; Magnetic Resonance Imaging - methods ; Male ; Medical imaging ; Middle Aged ; Osteomyelitis ; Osteomyelitis - diagnosis ; Osteomyelitis - diagnostic imaging ; Retrospective Studies ; Sensitivity</subject><ispartof>Journal of digital imaging, 2024-10, Vol.37 (5), p.2454-2465</ispartof><rights>2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c356t-4237254a0d29185f0045f40775be2cc6e1f364764e3e1a56aa96b5fc1848d7883</cites><orcidid>0000-0002-2831-8104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522243/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522243/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38491234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cakir, Maide</creatorcontrib><creatorcontrib>Tulum, Gökalp</creatorcontrib><creatorcontrib>Cuce, Ferhat</creatorcontrib><creatorcontrib>Yilmaz, Kerim Bora</creatorcontrib><creatorcontrib>Aralasmak, Ayse</creatorcontrib><creatorcontrib>Isik, Muhammet İkbal</creatorcontrib><creatorcontrib>Canbolat, Hüseyin</creatorcontrib><title>Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods</title><title>Journal of digital imaging</title><addtitle>J Imaging Inform Med</addtitle><description>Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone marrow between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee approved this retrospective study. From 148 patients, segmentation resulted in 679 labeled regions for T1-weighted images (comprising 151 CNO, 257 OM, and 271 TR) and 714 labeled regions for T2-weighted images (consisting of 160 CNO, 272 OM, and 282 TR). We employed both multi-class classification (MCC) and binary-class classification (BCC) approaches to compare the classification outcomes of CNO, TR, and OM. The ResNet-50 and the EfficientNet-b0 accuracy values were computed at 96.2% and 97.1%, respectively, for T1-weighted images. Additionally, accuracy values for ResNet-50 and the EfficientNet-b0 were determined at 95.6% and 96.8%, respectively, for T2-weighted images. Also, according to BCC for CNO, OM, and TR, the sensitivity of ResNet-50 is 91.1%, 92.4%, and 96.6% and the sensitivity of EfficientNet-b0 is 93.2%, 97.6%, and 98.1% for T1, respectively. For CNO, OM, and TR, the sensitivity of ResNet-50 is 94.9%, 83.6%, and 97.9% and the sensitivity of EfficientNet-b0 is 95.6%, 85.2%, and 98.6% for T2, respectively. The specificity values of ResNet-50 for CNO, OM, and TR in T1-weighted images are 98.1%, 97.9%, and 94.7% and 98.6%, 97.5%, and 96.7% in T2-weighted images respectively. Similarly, for EfficientNet-b0, the specificity values are 98.9%, 98.7%, and 98.4% and 99.1%, 98.5%, and 98.7% for T1-weighted and T2-weighted images respectively. In the diabetic foot, deep learning methods serve as a non-invasive tool to differentiate CNO, OM, and TR with high accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Arthropathy, Neurogenic - diagnosis</subject><subject>Arthropathy, Neurogenic - diagnostic imaging</subject><subject>Bone marrow</subject><subject>Classification</subject><subject>Deep Learning</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetic Foot - diagnosis</subject><subject>Diabetic Foot - diagnostic imaging</subject><subject>Diagnosis, Differential</subject><subject>Differential diagnosis</subject><subject>Female</subject><subject>Foot diseases</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Joint diseases</subject><subject>Machine learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Middle Aged</subject><subject>Osteomyelitis</subject><subject>Osteomyelitis - diagnosis</subject><subject>Osteomyelitis - diagnostic imaging</subject><subject>Retrospective Studies</subject><subject>Sensitivity</subject><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><issn>2948-2933</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUtv1DAUhSMEolXpH2CBIrFhE7h-JyuEZlpaaWg3ZW15nOuJq0w82A5o_n09nVIVVn6c7x75-FTVewKfCYD6kghQ1TZAeQMEpGrgVXVKO942tGPs9Yv9SXWe0j0AMEYYk_C2OmEt7whl_LTaL71zGHHK3oz10pvNFJJPdXCHwxqzt_VlCLm-TRnDdo-jz0U2U18vBhNtUW5wjmFn8lDQR8rEPBxv9vUfn4d6ibirV2ji5KdN_QPzEPr0rnrjzJjw_Gk9q35eXtwtrprV7ffrxbdVY5mQueGUKSq4gZ52pBUOgAvHQSmxRmqtROKY5EpyZEiMkMZ0ci2cJS1ve9W27Kz6evTdzest9rZEjWbUu-i3Ju51MF7_q0x-0JvwWxMiKKWcFYdPTw4x_JoxZb31yeI4mgnDnDTtRHv4bSAF_fgfeh_mOJV8mhFKVKc6kIWiR8rGkFJE9_waAvrQrj62q0u7-rFdDWXow8sczyN_u2QPkwWhKA</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Cakir, Maide</creator><creator>Tulum, Gökalp</creator><creator>Cuce, Ferhat</creator><creator>Yilmaz, Kerim Bora</creator><creator>Aralasmak, Ayse</creator><creator>Isik, Muhammet İkbal</creator><creator>Canbolat, Hüseyin</creator><general>Springer Nature B.V</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2831-8104</orcidid></search><sort><creationdate>20241001</creationdate><title>Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods</title><author>Cakir, Maide ; Tulum, Gökalp ; Cuce, Ferhat ; Yilmaz, Kerim Bora ; Aralasmak, Ayse ; Isik, Muhammet İkbal ; Canbolat, Hüseyin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4237254a0d29185f0045f40775be2cc6e1f364764e3e1a56aa96b5fc1848d7883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Arthropathy, Neurogenic - diagnosis</topic><topic>Arthropathy, Neurogenic - diagnostic imaging</topic><topic>Bone marrow</topic><topic>Classification</topic><topic>Deep Learning</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetic Foot - diagnosis</topic><topic>Diabetic Foot - diagnostic imaging</topic><topic>Diagnosis, Differential</topic><topic>Differential diagnosis</topic><topic>Female</topic><topic>Foot diseases</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Joint diseases</topic><topic>Machine learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Middle Aged</topic><topic>Osteomyelitis</topic><topic>Osteomyelitis - diagnosis</topic><topic>Osteomyelitis - diagnostic imaging</topic><topic>Retrospective Studies</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cakir, Maide</creatorcontrib><creatorcontrib>Tulum, Gökalp</creatorcontrib><creatorcontrib>Cuce, Ferhat</creatorcontrib><creatorcontrib>Yilmaz, Kerim Bora</creatorcontrib><creatorcontrib>Aralasmak, Ayse</creatorcontrib><creatorcontrib>Isik, Muhammet İkbal</creatorcontrib><creatorcontrib>Canbolat, Hüseyin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cakir, Maide</au><au>Tulum, Gökalp</au><au>Cuce, Ferhat</au><au>Yilmaz, Kerim Bora</au><au>Aralasmak, Ayse</au><au>Isik, Muhammet İkbal</au><au>Canbolat, Hüseyin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods</atitle><jtitle>Journal of digital imaging</jtitle><addtitle>J Imaging Inform Med</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>37</volume><issue>5</issue><spage>2454</spage><epage>2465</epage><pages>2454-2465</pages><issn>2948-2933</issn><issn>0897-1889</issn><issn>2948-2925</issn><eissn>2948-2933</eissn><eissn>1618-727X</eissn><abstract>Our study aims to evaluate the potential of a deep learning (DL) algorithm for differentiating the signal intensity of bone marrow between osteomyelitis (OM), Charcot neuropathic osteoarthropathy (CNO), and trauma (TR). The local ethics committee approved this retrospective study. From 148 patients, segmentation resulted in 679 labeled regions for T1-weighted images (comprising 151 CNO, 257 OM, and 271 TR) and 714 labeled regions for T2-weighted images (consisting of 160 CNO, 272 OM, and 282 TR). We employed both multi-class classification (MCC) and binary-class classification (BCC) approaches to compare the classification outcomes of CNO, TR, and OM. The ResNet-50 and the EfficientNet-b0 accuracy values were computed at 96.2% and 97.1%, respectively, for T1-weighted images. Additionally, accuracy values for ResNet-50 and the EfficientNet-b0 were determined at 95.6% and 96.8%, respectively, for T2-weighted images. Also, according to BCC for CNO, OM, and TR, the sensitivity of ResNet-50 is 91.1%, 92.4%, and 96.6% and the sensitivity of EfficientNet-b0 is 93.2%, 97.6%, and 98.1% for T1, respectively. For CNO, OM, and TR, the sensitivity of ResNet-50 is 94.9%, 83.6%, and 97.9% and the sensitivity of EfficientNet-b0 is 95.6%, 85.2%, and 98.6% for T2, respectively. The specificity values of ResNet-50 for CNO, OM, and TR in T1-weighted images are 98.1%, 97.9%, and 94.7% and 98.6%, 97.5%, and 96.7% in T2-weighted images respectively. Similarly, for EfficientNet-b0, the specificity values are 98.9%, 98.7%, and 98.4% and 99.1%, 98.5%, and 98.7% for T1-weighted and T2-weighted images respectively. In the diabetic foot, deep learning methods serve as a non-invasive tool to differentiate CNO, OM, and TR with high accuracy.</abstract><cop>Switzerland</cop><pub>Springer Nature B.V</pub><pmid>38491234</pmid><doi>10.1007/s10278-024-01067-0</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2831-8104</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2948-2933
ispartof Journal of digital imaging, 2024-10, Vol.37 (5), p.2454-2465
issn 2948-2933
0897-1889
2948-2925
2948-2933
1618-727X
language eng
recordid cdi_proquest_miscellaneous_2958294801
source Springer Nature; PubMed Central
subjects Accuracy
Algorithms
Arthropathy, Neurogenic - diagnosis
Arthropathy, Neurogenic - diagnostic imaging
Bone marrow
Classification
Deep Learning
Diabetes
Diabetes mellitus
Diabetic Foot - diagnosis
Diabetic Foot - diagnostic imaging
Diagnosis, Differential
Differential diagnosis
Female
Foot diseases
Humans
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Joint diseases
Machine learning
Magnetic Resonance Imaging - methods
Male
Medical imaging
Middle Aged
Osteomyelitis
Osteomyelitis - diagnosis
Osteomyelitis - diagnostic imaging
Retrospective Studies
Sensitivity
title Differential Diagnosis of Diabetic Foot Osteomyelitis and Charcot Neuropathic Osteoarthropathy with Deep Learning Methods
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T09%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20Diagnosis%20of%20Diabetic%20Foot%20Osteomyelitis%20and%20Charcot%20Neuropathic%20Osteoarthropathy%20with%20Deep%20Learning%20Methods&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Cakir,%20Maide&rft.date=2024-10-01&rft.volume=37&rft.issue=5&rft.spage=2454&rft.epage=2465&rft.pages=2454-2465&rft.issn=2948-2933&rft.eissn=2948-2933&rft_id=info:doi/10.1007/s10278-024-01067-0&rft_dat=%3Cproquest_pubme%3E3121797906%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4237254a0d29185f0045f40775be2cc6e1f364764e3e1a56aa96b5fc1848d7883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121797906&rft_id=info:pmid/38491234&rfr_iscdi=true