Loading…

Coherent multi-band MIMO radar: robustness analysis to SSMF-based RF signal delivery

A numerical evaluation is conducted to assess the impact of distributing radio frequency (RF) signals through optical fiber links on the performance of a coherent multi-band multiple-input multiple-output (MIMO) radar system. The analysis focuses on scenarios where the antennas are widely separated...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 2024-03, Vol.49 (6), p.1528-1531
Main Authors: Pandey, Gaurav, Scaffardi, Mirco, Maresca, Salvatore, Haris Amir, Malik Muhammad, Bogoni, Antonella, Malacarne, Antonio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A numerical evaluation is conducted to assess the impact of distributing radio frequency (RF) signals through optical fiber links on the performance of a coherent multi-band multiple-input multiple-output (MIMO) radar system. The analysis focuses on scenarios where the antennas are widely separated in comparison to the employed signal wavelengths. The development of a model to quantify the phase noise (PN) induced on each RF band due to the signal transmission through optical fiber links between the centralized base station and each radar peripheral is described. Monte Carlo simulation results are collected to estimate the key performance indicators (KPIs) for varying standard single-mode fiber (SSMF) length and different PN contributions. The main contributors to the PN are revealed to be chromatic dispersion (CD), double Rayleigh scattering (DRS), and mechanical vibrations. In a shipborne scenario, a significant performance degradation occurs only when the length of the fiber links reaches approximately 20 km. Further, the PN impact has also been studied in a shipborne scenario to analyze the robustness of the system for worse phase noise level assumptions. The results reveal excellent robustness of the proposed centralized acquisition and processing approach in the presence of both very long fiber links and economically employed RF oscillators.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.510328