Loading…

Scattered node compact finite difference-type formulas generated from radial basis functions

In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2006-02, Vol.212 (1), p.99-123
Main Authors: Wright, Grady B., Fornberg, Bengt
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303
cites cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303
container_end_page 123
container_issue 1
container_start_page 99
container_title Journal of computational physics
container_volume 212
creator Wright, Grady B.
Fornberg, Bengt
description In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.
doi_str_mv 10.1016/j.jcp.2005.05.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29587679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105003116</els_id><sourcerecordid>29587679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoodu0P6A3XZqbtyPLsmxyCiFNCoEe2twCYiyNghbbciVtIP--djeQW-HBHOa9N8zH2BcBewGi_XbYH-yyrwHUfpOEM7YT0ENVa9G-YzuAWlR934sP7GPOBwDoVNPt2OMvi6VQIsfn6IjbOC1oC_dhDoW4C96vy9lSVV4W4j6m6Thi5k80U8KyxnyKE0_oAo58wBwy98fZlhDn_Im99zhm-vw6z9nD95vf13fV_c_bH9dX95WVqiuVACLl3CCF99D6QTSgCJ12A2nsdO2aZpBaaW9JOmWVtG1To6dOQY1OgjxnF6feJcU_R8rFTCFbGkecKR6zqXvV6Vb3q1GcjDbFnBN5s6QwYXoxAszG0RzMytFsHM2mf-VfX8sxWxx9wtmG_BbUCmRfq9V3efLR-ulzoGSyDRs5FxLZYlwM_7nyF4XYiiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29587679</pqid></control><display><type>article</type><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wright, Grady B. ; Fornberg, Bengt</creator><creatorcontrib>Wright, Grady B. ; Fornberg, Bengt</creatorcontrib><description>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.05.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Compact ; Computational techniques ; Exact sciences and technology ; Finite difference method ; Mathematical methods in physics ; Mehrstellenverfahren ; Mesh-free ; Partial differential equations ; Physics ; Radial basis functions</subject><ispartof>Journal of computational physics, 2006-02, Vol.212 (1), p.99-123</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</citedby><cites>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17503925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, Grady B.</creatorcontrib><creatorcontrib>Fornberg, Bengt</creatorcontrib><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><title>Journal of computational physics</title><description>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</description><subject>Compact</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Mathematical methods in physics</subject><subject>Mehrstellenverfahren</subject><subject>Mesh-free</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Radial basis functions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoodu0P6A3XZqbtyPLsmxyCiFNCoEe2twCYiyNghbbciVtIP--djeQW-HBHOa9N8zH2BcBewGi_XbYH-yyrwHUfpOEM7YT0ENVa9G-YzuAWlR934sP7GPOBwDoVNPt2OMvi6VQIsfn6IjbOC1oC_dhDoW4C96vy9lSVV4W4j6m6Thi5k80U8KyxnyKE0_oAo58wBwy98fZlhDn_Im99zhm-vw6z9nD95vf13fV_c_bH9dX95WVqiuVACLl3CCF99D6QTSgCJ12A2nsdO2aZpBaaW9JOmWVtG1To6dOQY1OgjxnF6feJcU_R8rFTCFbGkecKR6zqXvV6Vb3q1GcjDbFnBN5s6QwYXoxAszG0RzMytFsHM2mf-VfX8sxWxx9wtmG_BbUCmRfq9V3efLR-ulzoGSyDRs5FxLZYlwM_7nyF4XYiiw</recordid><startdate>20060210</startdate><enddate>20060210</enddate><creator>Wright, Grady B.</creator><creator>Fornberg, Bengt</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060210</creationdate><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><author>Wright, Grady B. ; Fornberg, Bengt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Compact</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Mathematical methods in physics</topic><topic>Mehrstellenverfahren</topic><topic>Mesh-free</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Radial basis functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, Grady B.</creatorcontrib><creatorcontrib>Fornberg, Bengt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, Grady B.</au><au>Fornberg, Bengt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattered node compact finite difference-type formulas generated from radial basis functions</atitle><jtitle>Journal of computational physics</jtitle><date>2006-02-10</date><risdate>2006</risdate><volume>212</volume><issue>1</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.05.030</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2006-02, Vol.212 (1), p.99-123
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29587679
source ScienceDirect Freedom Collection 2022-2024
subjects Compact
Computational techniques
Exact sciences and technology
Finite difference method
Mathematical methods in physics
Mehrstellenverfahren
Mesh-free
Partial differential equations
Physics
Radial basis functions
title Scattered node compact finite difference-type formulas generated from radial basis functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattered%20node%20compact%20finite%20difference-type%20formulas%20generated%20from%20radial%20basis%20functions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wright,%20Grady%20B.&rft.date=2006-02-10&rft.volume=212&rft.issue=1&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.05.030&rft_dat=%3Cproquest_cross%3E29587679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29587679&rft_id=info:pmid/&rfr_iscdi=true