Loading…
Scattered node compact finite difference-type formulas generated from radial basis functions
In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered...
Saved in:
Published in: | Journal of computational physics 2006-02, Vol.212 (1), p.99-123 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303 |
container_end_page | 123 |
container_issue | 1 |
container_start_page | 99 |
container_title | Journal of computational physics |
container_volume | 212 |
creator | Wright, Grady B. Fornberg, Bengt |
description | In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With
scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function. |
doi_str_mv | 10.1016/j.jcp.2005.05.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29587679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999105003116</els_id><sourcerecordid>29587679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVoodu0P6A3XZqbtyPLsmxyCiFNCoEe2twCYiyNghbbciVtIP--djeQW-HBHOa9N8zH2BcBewGi_XbYH-yyrwHUfpOEM7YT0ENVa9G-YzuAWlR934sP7GPOBwDoVNPt2OMvi6VQIsfn6IjbOC1oC_dhDoW4C96vy9lSVV4W4j6m6Thi5k80U8KyxnyKE0_oAo58wBwy98fZlhDn_Im99zhm-vw6z9nD95vf13fV_c_bH9dX95WVqiuVACLl3CCF99D6QTSgCJ12A2nsdO2aZpBaaW9JOmWVtG1To6dOQY1OgjxnF6feJcU_R8rFTCFbGkecKR6zqXvV6Vb3q1GcjDbFnBN5s6QwYXoxAszG0RzMytFsHM2mf-VfX8sxWxx9wtmG_BbUCmRfq9V3efLR-ulzoGSyDRs5FxLZYlwM_7nyF4XYiiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29587679</pqid></control><display><type>article</type><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Wright, Grady B. ; Fornberg, Bengt</creator><creatorcontrib>Wright, Grady B. ; Fornberg, Bengt</creatorcontrib><description>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With
scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2005.05.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Compact ; Computational techniques ; Exact sciences and technology ; Finite difference method ; Mathematical methods in physics ; Mehrstellenverfahren ; Mesh-free ; Partial differential equations ; Physics ; Radial basis functions</subject><ispartof>Journal of computational physics, 2006-02, Vol.212 (1), p.99-123</ispartof><rights>2005 Elsevier Inc.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</citedby><cites>FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17503925$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, Grady B.</creatorcontrib><creatorcontrib>Fornberg, Bengt</creatorcontrib><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><title>Journal of computational physics</title><description>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With
scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</description><subject>Compact</subject><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite difference method</subject><subject>Mathematical methods in physics</subject><subject>Mehrstellenverfahren</subject><subject>Mesh-free</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Radial basis functions</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVoodu0P6A3XZqbtyPLsmxyCiFNCoEe2twCYiyNghbbciVtIP--djeQW-HBHOa9N8zH2BcBewGi_XbYH-yyrwHUfpOEM7YT0ENVa9G-YzuAWlR934sP7GPOBwDoVNPt2OMvi6VQIsfn6IjbOC1oC_dhDoW4C96vy9lSVV4W4j6m6Thi5k80U8KyxnyKE0_oAo58wBwy98fZlhDn_Im99zhm-vw6z9nD95vf13fV_c_bH9dX95WVqiuVACLl3CCF99D6QTSgCJ12A2nsdO2aZpBaaW9JOmWVtG1To6dOQY1OgjxnF6feJcU_R8rFTCFbGkecKR6zqXvV6Vb3q1GcjDbFnBN5s6QwYXoxAszG0RzMytFsHM2mf-VfX8sxWxx9wtmG_BbUCmRfq9V3efLR-ulzoGSyDRs5FxLZYlwM_7nyF4XYiiw</recordid><startdate>20060210</startdate><enddate>20060210</enddate><creator>Wright, Grady B.</creator><creator>Fornberg, Bengt</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20060210</creationdate><title>Scattered node compact finite difference-type formulas generated from radial basis functions</title><author>Wright, Grady B. ; Fornberg, Bengt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Compact</topic><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite difference method</topic><topic>Mathematical methods in physics</topic><topic>Mehrstellenverfahren</topic><topic>Mesh-free</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Radial basis functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, Grady B.</creatorcontrib><creatorcontrib>Fornberg, Bengt</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, Grady B.</au><au>Fornberg, Bengt</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scattered node compact finite difference-type formulas generated from radial basis functions</atitle><jtitle>Journal of computational physics</jtitle><date>2006-02-10</date><risdate>2006</risdate><volume>212</volume><issue>1</issue><spage>99</spage><epage>123</epage><pages>99-123</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>In standard equispaced finite difference (FD) formulas, symmetries can make the order of accuracy relatively high compared to the number of nodes in the FD stencil. With
scattered nodes, such symmetries are no longer available. The generalization of compact FD formulas that we propose for scattered nodes and radial basis functions (RBFs) achieves the goal of still keeping the number of stencil nodes small without a similar reduction in accuracy. We analyze the accuracy of these new compact RBF-FD formulas by applying them to some model problems, and study the effects of the shape parameter that arises in, for example, the multiquadric radial function.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2005.05.030</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2006-02, Vol.212 (1), p.99-123 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29587679 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Compact Computational techniques Exact sciences and technology Finite difference method Mathematical methods in physics Mehrstellenverfahren Mesh-free Partial differential equations Physics Radial basis functions |
title | Scattered node compact finite difference-type formulas generated from radial basis functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scattered%20node%20compact%20finite%20difference-type%20formulas%20generated%20from%20radial%20basis%20functions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Wright,%20Grady%20B.&rft.date=2006-02-10&rft.volume=212&rft.issue=1&rft.spage=99&rft.epage=123&rft.pages=99-123&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2005.05.030&rft_dat=%3Cproquest_cross%3E29587679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-10ee5ddb31ff06fb1405ead7dbe7a872d44b3757fce3d5c53c642afe8502ad303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29587679&rft_id=info:pmid/&rfr_iscdi=true |