Loading…
Three-Dimensional Microfabrication System for Scaffolds in Tissue Engineering
Understanding chondrocyte behavior inside complex, three-dimensional environments with controlled patterning of geometrical factors would provide significant insights into the basic biology of tissue regenerations. One of the fundamental limitations in studying such behavior has been the inability t...
Saved in:
Published in: | Key engineering materials 2006-12, Vol.326-328, p.723-726 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding chondrocyte behavior inside complex, three-dimensional environments
with controlled patterning of geometrical factors would provide significant insights into the basic
biology of tissue regenerations. One of the fundamental limitations in studying such behavior has
been the inability to fabricate controlled 3D structures. To overcome this problem, we have
developed a three-dimensional microfabrication system. This system allows fabrication of
predesigned internal architectures and pore size by stacking up the photopolymerized materials.
Photopolymer SL5180 was used as the 3D microfabricated scaffolds. The results demonstrate that
controllable and reproducible inner-architecture can be fabricated. Chondrocytes from human nasal
septum were cultured in 3D scaffolds for cell adhesion behavior. Such 3D scaffolds might provide
effective key factors to study cell behavior in complex environments and could eventually lead to
optimum design of scaffolds in various tissue regenerations such as cartilage, bone, etc. in a near
future. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.326-328.723 |