Loading…
Surface growth mechanisms and structural faulting in the growth of large single and spherulitic titanosilicate ETS-4 crystals
Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded t...
Saved in:
Published in: | Journal of crystal growth 2004-10, Vol.270 (3-4), p.674-684 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Morphological, surface and crystallographic analyses of titanosilicate ETS-4 products, with diverse habits ranging from spherulitic particles composed of submicron crystallites to large single crystals, are presented. Pole figures revealed that crystal surfaces with a-, b- and c- axes corresponded to 〈110〉, 〈010〉 and 〈001〉 directions, respectively. Thus, technologically important 8-membered ring pores and titania chains in ETS-4 run along the b-axis of single crystals and terminate at the smallest crystal face. Height of the spiral growth steps observed on {100} and {001} surfaces corresponded to the interplanar spacings associated with their crystallographic orientation, and is equivalent to the thickness of building units that form the ETS-4 framework. Data suggest that the more viscous synthesis mixtures, with a large driving force for growth, increased the two- and three-dimensional nucleation, while limiting the transport of nutrients to the growth surface. These conditions increase the tendency for stacking fault formation on {100} surfaces and small angle branching, which eventually results in spherulitic growth. The growth of high quality ETS-4 single crystals (from less viscous synthesis mixtures) occurred at lower surface nucleation rates. Data suggest that these high quality, large crystals grew due to one-dimensional nucleation at spiral hillocks, and indicate that under these conditions un-faulted growth is preferred. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/j.jcrysgro.2004.06.032 |