Loading…

Dislocation density-based modelling of plastic deformation of Zircaloy-4

This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in wh...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86
Main Authors: Dunlop, J.W., Bréchet, Y.J.M., Legras, L., Estrin, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03
cites cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03
container_end_page 86
container_issue 1
container_start_page 77
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 443
creator Dunlop, J.W.
Bréchet, Y.J.M.
Legras, L.
Estrin, Y.
description This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.
doi_str_mv 10.1016/j.msea.2006.08.085
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29651134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509306019368</els_id><sourcerecordid>29651134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-96K110jRNCl5k_VhhwYtevIQ0H5KlbdakK-y_N6UL3oSBgeGZd-Z9EbrGUGDA9d226KORRQlQF8BT0RO0wJyRvGpIfYoW0JQ4p9CQc3QR4xYAcAV0gdaPLnZeydH5IdNmiG485K2MRme916br3PCVeZvtOhlHpxJifehnPI0_XVCy84e8ukRnVnbRXB37En08P72v1vnm7eV19bDJFanxmNuaVJYDSEosY4oaYrWWLWuI5JTpFmutLG8pYS0jmmKiCHBNWi1BldwCWaLbWXcX_PfexFH0Lqr0qByM30dRNjXFmFQJLGdQBR9jMFbsgutlOAgMYgpNbMUUmphCE8BT0bR0c1SXMRmzQQ7Kxb9NTsqGskn8fuZMsvrjTBBROTMoo10wahTau__O_AJvWoNe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29651134</pqid></control><display><type>article</type><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</creator><creatorcontrib>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</creatorcontrib><description>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.08.085</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Constitutive equations ; Creep ; Dislocations ; Elasticity. Plasticity ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Modelling ; Plastic deformation ; Zircaloy-4</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</citedby><cites>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18329574$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunlop, J.W.</creatorcontrib><creatorcontrib>Bréchet, Y.J.M.</creatorcontrib><creatorcontrib>Legras, L.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</description><subject>Applied sciences</subject><subject>Constitutive equations</subject><subject>Creep</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>Plastic deformation</subject><subject>Zircaloy-4</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-96K110jRNCl5k_VhhwYtevIQ0H5KlbdakK-y_N6UL3oSBgeGZd-Z9EbrGUGDA9d226KORRQlQF8BT0RO0wJyRvGpIfYoW0JQ4p9CQc3QR4xYAcAV0gdaPLnZeydH5IdNmiG485K2MRme916br3PCVeZvtOhlHpxJifehnPI0_XVCy84e8ukRnVnbRXB37En08P72v1vnm7eV19bDJFanxmNuaVJYDSEosY4oaYrWWLWuI5JTpFmutLG8pYS0jmmKiCHBNWi1BldwCWaLbWXcX_PfexFH0Lqr0qByM30dRNjXFmFQJLGdQBR9jMFbsgutlOAgMYgpNbMUUmphCE8BT0bR0c1SXMRmzQQ7Kxb9NTsqGskn8fuZMsvrjTBBROTMoo10wahTau__O_AJvWoNe</recordid><startdate>20070115</startdate><enddate>20070115</enddate><creator>Dunlop, J.W.</creator><creator>Bréchet, Y.J.M.</creator><creator>Legras, L.</creator><creator>Estrin, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070115</creationdate><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><author>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Constitutive equations</topic><topic>Creep</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>Plastic deformation</topic><topic>Zircaloy-4</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunlop, J.W.</creatorcontrib><creatorcontrib>Bréchet, Y.J.M.</creatorcontrib><creatorcontrib>Legras, L.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunlop, J.W.</au><au>Bréchet, Y.J.M.</au><au>Legras, L.</au><au>Estrin, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation density-based modelling of plastic deformation of Zircaloy-4</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2007-01-15</date><risdate>2007</risdate><volume>443</volume><issue>1</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.08.085</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_29651134
source ScienceDirect Freedom Collection 2022-2024
subjects Applied sciences
Constitutive equations
Creep
Dislocations
Elasticity. Plasticity
Exact sciences and technology
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Modelling
Plastic deformation
Zircaloy-4
title Dislocation density-based modelling of plastic deformation of Zircaloy-4
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20density-based%20modelling%20of%20plastic%20deformation%20of%20Zircaloy-4&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Dunlop,%20J.W.&rft.date=2007-01-15&rft.volume=443&rft.issue=1&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.08.085&rft_dat=%3Cproquest_cross%3E29651134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29651134&rft_id=info:pmid/&rfr_iscdi=true