Loading…
Dislocation density-based modelling of plastic deformation of Zircaloy-4
This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in wh...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03 |
container_end_page | 86 |
container_issue | 1 |
container_start_page | 77 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 443 |
creator | Dunlop, J.W. Bréchet, Y.J.M. Legras, L. Estrin, Y. |
description | This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated. |
doi_str_mv | 10.1016/j.msea.2006.08.085 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29651134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509306019368</els_id><sourcerecordid>29651134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU-96K110jRNCl5k_VhhwYtevIQ0H5KlbdakK-y_N6UL3oSBgeGZd-Z9EbrGUGDA9d226KORRQlQF8BT0RO0wJyRvGpIfYoW0JQ4p9CQc3QR4xYAcAV0gdaPLnZeydH5IdNmiG485K2MRme916br3PCVeZvtOhlHpxJifehnPI0_XVCy84e8ukRnVnbRXB37En08P72v1vnm7eV19bDJFanxmNuaVJYDSEosY4oaYrWWLWuI5JTpFmutLG8pYS0jmmKiCHBNWi1BldwCWaLbWXcX_PfexFH0Lqr0qByM30dRNjXFmFQJLGdQBR9jMFbsgutlOAgMYgpNbMUUmphCE8BT0bR0c1SXMRmzQQ7Kxb9NTsqGskn8fuZMsvrjTBBROTMoo10wahTau__O_AJvWoNe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29651134</pqid></control><display><type>article</type><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</creator><creatorcontrib>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</creatorcontrib><description>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.08.085</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Constitutive equations ; Creep ; Dislocations ; Elasticity. Plasticity ; Exact sciences and technology ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Modelling ; Plastic deformation ; Zircaloy-4</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</citedby><cites>FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18329574$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dunlop, J.W.</creatorcontrib><creatorcontrib>Bréchet, Y.J.M.</creatorcontrib><creatorcontrib>Legras, L.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</description><subject>Applied sciences</subject><subject>Constitutive equations</subject><subject>Creep</subject><subject>Dislocations</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Modelling</subject><subject>Plastic deformation</subject><subject>Zircaloy-4</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU-96K110jRNCl5k_VhhwYtevIQ0H5KlbdakK-y_N6UL3oSBgeGZd-Z9EbrGUGDA9d226KORRQlQF8BT0RO0wJyRvGpIfYoW0JQ4p9CQc3QR4xYAcAV0gdaPLnZeydH5IdNmiG485K2MRme916br3PCVeZvtOhlHpxJifehnPI0_XVCy84e8ukRnVnbRXB37En08P72v1vnm7eV19bDJFanxmNuaVJYDSEosY4oaYrWWLWuI5JTpFmutLG8pYS0jmmKiCHBNWi1BldwCWaLbWXcX_PfexFH0Lqr0qByM30dRNjXFmFQJLGdQBR9jMFbsgutlOAgMYgpNbMUUmphCE8BT0bR0c1SXMRmzQQ7Kxb9NTsqGskn8fuZMsvrjTBBROTMoo10wahTau__O_AJvWoNe</recordid><startdate>20070115</startdate><enddate>20070115</enddate><creator>Dunlop, J.W.</creator><creator>Bréchet, Y.J.M.</creator><creator>Legras, L.</creator><creator>Estrin, Y.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070115</creationdate><title>Dislocation density-based modelling of plastic deformation of Zircaloy-4</title><author>Dunlop, J.W. ; Bréchet, Y.J.M. ; Legras, L. ; Estrin, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Constitutive equations</topic><topic>Creep</topic><topic>Dislocations</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Modelling</topic><topic>Plastic deformation</topic><topic>Zircaloy-4</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunlop, J.W.</creatorcontrib><creatorcontrib>Bréchet, Y.J.M.</creatorcontrib><creatorcontrib>Legras, L.</creatorcontrib><creatorcontrib>Estrin, Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunlop, J.W.</au><au>Bréchet, Y.J.M.</au><au>Legras, L.</au><au>Estrin, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dislocation density-based modelling of plastic deformation of Zircaloy-4</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2007-01-15</date><risdate>2007</risdate><volume>443</volume><issue>1</issue><spage>77</spage><epage>86</epage><pages>77-86</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>This paper considers the deformation of the zirconium alloy Zircaloy-4. Experimental data for constant strain rate and creep tests in the temperature and stress regime expected during dry storage of spent fuel are presented and modelled. The model used follows the approach of Kocks and Mecking in which the dislocation density is considered as the governing internal variable. The model is extended in a phenomenological manner, to take into account the incompatibility stress that develops as a consequence of the anisotropy of the hcp zirconium. An equation that accounts for the evolution of the incompatibility stress with strain is used in conjunction with the evolution equation for dislocation density thus providing a full description of the deformation behaviour. A set of parameters determined experimentally enables the prediction of the mechanical response under constant strain rate and creep conditions. A reasonably good predictive capability of the model is demonstrated.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.08.085</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-01, Vol.443 (1), p.77-86 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_29651134 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Applied sciences Constitutive equations Creep Dislocations Elasticity. Plasticity Exact sciences and technology Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Modelling Plastic deformation Zircaloy-4 |
title | Dislocation density-based modelling of plastic deformation of Zircaloy-4 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dislocation%20density-based%20modelling%20of%20plastic%20deformation%20of%20Zircaloy-4&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Dunlop,%20J.W.&rft.date=2007-01-15&rft.volume=443&rft.issue=1&rft.spage=77&rft.epage=86&rft.pages=77-86&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.08.085&rft_dat=%3Cproquest_cross%3E29651134%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-f634f800a53f77c5e3fddab793a857db1ddcf8b537b73d513c308d3bda0c28f03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29651134&rft_id=info:pmid/&rfr_iscdi=true |