Loading…
Stability of an elastic rod on a fractional derivative type of foundation
The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the...
Saved in:
Published in: | Journal of sound and vibration 2004-10, Vol.277 (1), p.149-161 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63 |
---|---|
cites | cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63 |
container_end_page | 161 |
container_issue | 1 |
container_start_page | 149 |
container_title | Journal of sound and vibration |
container_volume | 277 |
creator | Atanackovic, T.M. Stankovic, B. |
description | The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation. |
doi_str_mv | 10.1016/j.jsv.2003.08.050 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29662502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X03012136</els_id><sourcerecordid>29662502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVJoY7bD9CbLu1tN6P9o9XSUzFpYzDk0AZyE7PSCGTWK1eSDf723cWG3HKaw_zem3mPsa8CSgFCPuzLfTqXFUBdgiqhhQ9sJaBvC9VKdcdWAFVVNBJeP7H7lPYA0Dd1s2LbPxkHP_p84cFxnDiNmLI3PAbLw8SRu4gm-zDhyC1Ff8bsz8Tz5UiLwoXTZHHZf2YfHY6Jvtzmmr38evy7eSp2z7-3m5-7wtStzEVjW6tgsNR3g-2l6VyHILBrOtWRVJ1SYmhaFAIH0fZEsqbBdcqiksY1TtZr9v3qe4zh34lS1gefDI0jThROSVe9lFUL1QyKK2hiSCmS08foDxgvWoBeStN7PZeml9I0KD2XNmu-3cwxGRzn7JPx6U0oYf4PFu7HlaM56dlT1Ml4mgxZH8lkbYN_58p_8ByCSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29662502</pqid></control><display><type>article</type><title>Stability of an elastic rod on a fractional derivative type of foundation</title><source>Elsevier</source><creator>Atanackovic, T.M. ; Stankovic, B.</creator><creatorcontrib>Atanackovic, T.M. ; Stankovic, B.</creatorcontrib><description>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2003.08.050</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Buckling ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2004-10, Vol.277 (1), p.149-161</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</citedby><cites>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16088100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Stankovic, B.</creatorcontrib><title>Stability of an elastic rod on a fractional derivative type of foundation</title><title>Journal of sound and vibration</title><description>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</description><subject>Buckling</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVJoY7bD9CbLu1tN6P9o9XSUzFpYzDk0AZyE7PSCGTWK1eSDf723cWG3HKaw_zem3mPsa8CSgFCPuzLfTqXFUBdgiqhhQ9sJaBvC9VKdcdWAFVVNBJeP7H7lPYA0Dd1s2LbPxkHP_p84cFxnDiNmLI3PAbLw8SRu4gm-zDhyC1Ff8bsz8Tz5UiLwoXTZHHZf2YfHY6Jvtzmmr38evy7eSp2z7-3m5-7wtStzEVjW6tgsNR3g-2l6VyHILBrOtWRVJ1SYmhaFAIH0fZEsqbBdcqiksY1TtZr9v3qe4zh34lS1gefDI0jThROSVe9lFUL1QyKK2hiSCmS08foDxgvWoBeStN7PZeml9I0KD2XNmu-3cwxGRzn7JPx6U0oYf4PFu7HlaM56dlT1Ml4mgxZH8lkbYN_58p_8ByCSw</recordid><startdate>20041006</startdate><enddate>20041006</enddate><creator>Atanackovic, T.M.</creator><creator>Stankovic, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20041006</creationdate><title>Stability of an elastic rod on a fractional derivative type of foundation</title><author>Atanackovic, T.M. ; Stankovic, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Buckling</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Stankovic, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanackovic, T.M.</au><au>Stankovic, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of an elastic rod on a fractional derivative type of foundation</atitle><jtitle>Journal of sound and vibration</jtitle><date>2004-10-06</date><risdate>2004</risdate><volume>277</volume><issue>1</issue><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2003.08.050</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2004-10, Vol.277 (1), p.149-161 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_proquest_miscellaneous_29662502 |
source | Elsevier |
subjects | Buckling Exact sciences and technology Fundamental areas of phenomenology (including applications) Physics Solid mechanics Structural and continuum mechanics Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...) |
title | Stability of an elastic rod on a fractional derivative type of foundation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20an%20elastic%20rod%20on%20a%20fractional%20derivative%20type%20of%20foundation&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Atanackovic,%20T.M.&rft.date=2004-10-06&rft.volume=277&rft.issue=1&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2003.08.050&rft_dat=%3Cproquest_cross%3E29662502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29662502&rft_id=info:pmid/&rfr_iscdi=true |