Loading…

Stability of an elastic rod on a fractional derivative type of foundation

The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2004-10, Vol.277 (1), p.149-161
Main Authors: Atanackovic, T.M., Stankovic, B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63
cites cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63
container_end_page 161
container_issue 1
container_start_page 149
container_title Journal of sound and vibration
container_volume 277
creator Atanackovic, T.M.
Stankovic, B.
description The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.
doi_str_mv 10.1016/j.jsv.2003.08.050
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29662502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X03012136</els_id><sourcerecordid>29662502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVJoY7bD9CbLu1tN6P9o9XSUzFpYzDk0AZyE7PSCGTWK1eSDf723cWG3HKaw_zem3mPsa8CSgFCPuzLfTqXFUBdgiqhhQ9sJaBvC9VKdcdWAFVVNBJeP7H7lPYA0Dd1s2LbPxkHP_p84cFxnDiNmLI3PAbLw8SRu4gm-zDhyC1Ff8bsz8Tz5UiLwoXTZHHZf2YfHY6Jvtzmmr38evy7eSp2z7-3m5-7wtStzEVjW6tgsNR3g-2l6VyHILBrOtWRVJ1SYmhaFAIH0fZEsqbBdcqiksY1TtZr9v3qe4zh34lS1gefDI0jThROSVe9lFUL1QyKK2hiSCmS08foDxgvWoBeStN7PZeml9I0KD2XNmu-3cwxGRzn7JPx6U0oYf4PFu7HlaM56dlT1Ml4mgxZH8lkbYN_58p_8ByCSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29662502</pqid></control><display><type>article</type><title>Stability of an elastic rod on a fractional derivative type of foundation</title><source>Elsevier</source><creator>Atanackovic, T.M. ; Stankovic, B.</creator><creatorcontrib>Atanackovic, T.M. ; Stankovic, B.</creatorcontrib><description>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2003.08.050</identifier><identifier>CODEN: JSVIAG</identifier><language>eng</language><publisher>London: Elsevier Ltd</publisher><subject>Buckling ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Physics ; Solid mechanics ; Structural and continuum mechanics ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of sound and vibration, 2004-10, Vol.277 (1), p.149-161</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</citedby><cites>FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16088100$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Stankovic, B.</creatorcontrib><title>Stability of an elastic rod on a fractional derivative type of foundation</title><title>Journal of sound and vibration</title><description>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</description><subject>Buckling</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE9rGzEQxUVJoY7bD9CbLu1tN6P9o9XSUzFpYzDk0AZyE7PSCGTWK1eSDf723cWG3HKaw_zem3mPsa8CSgFCPuzLfTqXFUBdgiqhhQ9sJaBvC9VKdcdWAFVVNBJeP7H7lPYA0Dd1s2LbPxkHP_p84cFxnDiNmLI3PAbLw8SRu4gm-zDhyC1Ff8bsz8Tz5UiLwoXTZHHZf2YfHY6Jvtzmmr38evy7eSp2z7-3m5-7wtStzEVjW6tgsNR3g-2l6VyHILBrOtWRVJ1SYmhaFAIH0fZEsqbBdcqiksY1TtZr9v3qe4zh34lS1gefDI0jThROSVe9lFUL1QyKK2hiSCmS08foDxgvWoBeStN7PZeml9I0KD2XNmu-3cwxGRzn7JPx6U0oYf4PFu7HlaM56dlT1Ml4mgxZH8lkbYN_58p_8ByCSw</recordid><startdate>20041006</startdate><enddate>20041006</enddate><creator>Atanackovic, T.M.</creator><creator>Stankovic, B.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20041006</creationdate><title>Stability of an elastic rod on a fractional derivative type of foundation</title><author>Atanackovic, T.M. ; Stankovic, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Buckling</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atanackovic, T.M.</creatorcontrib><creatorcontrib>Stankovic, B.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atanackovic, T.M.</au><au>Stankovic, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of an elastic rod on a fractional derivative type of foundation</atitle><jtitle>Journal of sound and vibration</jtitle><date>2004-10-06</date><risdate>2004</risdate><volume>277</volume><issue>1</issue><spage>149</spage><epage>161</epage><pages>149-161</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><coden>JSVIAG</coden><abstract>The lateral vibration of an axially loaded elastic rod positioned on a fractional derivative type of foundation is studied. It is shown that the dynamics of the problem is governed by a system of two coupled linear differential equations with fractional derivatives. For this system of equations the questions of existence, regularity and the stability of solution are analysed. The results are compared with the stability bound for an elastic rod on Winkler (elastic) type of foundation.</abstract><cop>London</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2003.08.050</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2004-10, Vol.277 (1), p.149-161
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_29662502
source Elsevier
subjects Buckling
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Physics
Solid mechanics
Structural and continuum mechanics
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Stability of an elastic rod on a fractional derivative type of foundation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A02%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20an%20elastic%20rod%20on%20a%20fractional%20derivative%20type%20of%20foundation&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Atanackovic,%20T.M.&rft.date=2004-10-06&rft.volume=277&rft.issue=1&rft.spage=149&rft.epage=161&rft.pages=149-161&rft.issn=0022-460X&rft.eissn=1095-8568&rft.coden=JSVIAG&rft_id=info:doi/10.1016/j.jsv.2003.08.050&rft_dat=%3Cproquest_cross%3E29662502%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-4d5d80bde97bd96c7f7a01a74787e687881b45a11ab159ee63ebf78da86cf4f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29662502&rft_id=info:pmid/&rfr_iscdi=true