Loading…

4-Carboxyphenyl as efficient donor group in nano Zn-Porphyrin for dye sensitized solar cells

Dye-sensitized solar cells, represent the alternate technology in solar research due to their cost effective, easy fabrication processes, higher efficiencies, and design flexibility. In this research, dual donor group modified zinc porphyrin dyes, have been synthesized for DSSCs. The complexes of zi...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2024-06, Vol.251 (Pt 2), p.118704, Article 118704
Main Authors: Dayanithi, Janet, Pichaikaran, Sudhakar, Selvam, Sandhiya, Kotteswaran, Shanmugam, Kumaresan, Natesan, Pugazhendhi, Arivalagan, Rajesh Kumar, Manavalan, AL Garalleh, Hakim, Ali Alshehri, Mohammed, Murugadoss, Govindhasamy
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dye-sensitized solar cells, represent the alternate technology in solar research due to their cost effective, easy fabrication processes, higher efficiencies, and design flexibility. In this research, dual donor group modified zinc porphyrin dyes, have been synthesized for DSSCs. The complexes of zinc porphyrin functioned as acceptor or attaching groups within each mesophenyl ring and carboxylic acid. These complexes exhibited diverse alkyl substituents and sizable electron-donating substituents, contributing to their varied chemical structures and potential applications. The dual Donor-π bridge -Acceptor group sensitizers, Zn[5,15-diphenylcarbazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-1) and Zn [5,15-thiadiazole-10,20-(4-carboxyphenyl) Porphyrin] (KSR-2) have been synthesized and adopted for DSSCs implementation. The molar absorption coefficients (ε) of KSR-2 and KSR-1 Soret bands were 0.56 x 105 mol/L/cm and 0.47 x 105 mol/L/cm, respectively. The Q bands of the KSR-1 and KSR-2 dyes were 1.10 x 105 mol/L/cm and 1.0 x 105 mol/L/cm, respectively and the molar absorption coefficient of the KSR-1 dye was greater when compared to the KSR-2 dye. The molar absorption coefficient of 0.71 x 105 mol/L/cm was visible in the KSR -1 Q-band. DFT calculations and the electrochemical characteristics of the KSR-1 and KSR-2 dyes have been studied and discussed. The exploration involved in investigating the photophysical properties and photovoltaic performance which were affected by varying the length and number of the donor entities. The wall-plug efficiency of the KSR-1 based solar panel was Voc = 0.68 V, Jsc = 8.94 mA/m2, FF = 56 and Efficiency (μ) = 3.44%. The wall-plug efficiency of the KSR-2 based solar panel was Voc = 0.63 V, Jsc = 5.42 mA/m2, FF = 53 and Efficiency (μ) = 1.83%. •A novel Donor-π-Acceptor based Zn-Porphyrins have been designed and synthesized.•Diphenyl carbazole used as a donor instead of thiadiazol in the Porphyrin core.•Molar extinction coefficient of KSR-1 was increased due to Diphenyl carbazole.•Energy band alignment in Diphenyl carbazole based Zn-Porphyrin is suitable for DSSC.•KSR-1 cell efficiency was achieved almost equal to commercially available dye.
ISSN:0013-9351
1096-0953
1096-0953
DOI:10.1016/j.envres.2024.118704