Loading…

The influence of friction models on finite element simulations of machining

In the analysis of orthogonal cutting process using finite element (FE) simulations, predictions are greatly influenced by two major factors; a) flow stress characteristics of work material at cutting regimes and b) friction characteristics mainly at the tool-chip interface. The uncertainty of work...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine tools & manufacture 2006-04, Vol.46 (5), p.518-530
Main Author: Ozel, Tugrul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the analysis of orthogonal cutting process using finite element (FE) simulations, predictions are greatly influenced by two major factors; a) flow stress characteristics of work material at cutting regimes and b) friction characteristics mainly at the tool-chip interface. The uncertainty of work material flow stress upon FE simulations may be low when there is a constitutive model for work material that is obtained empirically from high-strain rate and temperature deformation tests. However, the difficulty arises when one needs to implement accurate friction models for cutting simulations using a particular FE formulation. In this study, an updated Lagrangian finite element formulation is used to simulate continuous chip formation process in orthogonal cutting of low carbon free-cutting steel. Experimentally measured stress distributions on the tool rake face are utilized in developing several different friction models. The effects of tool-chip interfacial friction models on the FE simulations are investigated. The comparison results depict that the friction modeling at the tool-chip interface has significant influence on the FE simulations of machining. Specifically, variable friction models that are developed from the experimentally measured normal and frictional stresses at the tool rake face resulted in most favorable predictions. Predictions presented in this work also justify that the FE simulation technique used for orthogonal cutting process can be an accurate and viable analysis as long as flow stress behavior of the work material is valid at the machining regimes and the friction characteristics at the tool-chip interface is modeled properly.
ISSN:0890-6955
1879-2170
DOI:10.1016/j.ijmachtools.2005.07.001