Loading…
Universal Design and Efficient Synthesis for High Ambipolar Mobility Emissive Conjugated Polymers
High ambipolar mobility emissive conjugated polymers (HAME‐CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade‐off relationship between high ambipolar mobility and strong solid‐state luminescence, the development...
Saved in:
Published in: | Angewandte Chemie International Edition 2024-05, Vol.63 (19), p.e202319997-n/a |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | High ambipolar mobility emissive conjugated polymers (HAME‐CPs) are perfect candidates for organic optoelectronic devices, such as polymer light emitting transistors. However, due to intrinsic trade‐off relationship between high ambipolar mobility and strong solid‐state luminescence, the development of HAME‐CPs suffers from high structural and synthetic complexity. Herein, a universal design principle and simple synthetic approach for HAME‐CPs are developed. A series of simple non‐fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two‐step microwave assisted C−H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid‐state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10−2 cm2 V−1 s−1, and can be used in multifunctional optoelectronic devices. This work opens a new avenue for developing HAME‐CPs by efficient synthesis and rational design.
Herein, a universal design principle and synthetic shortcut towards HAME‐CPs are developed. A series of simple non‐fused polymers composed of charge transfer units, π bridges and emissive units are synthesized via a two‐step microwave assisted C−H arylation and direct arylation polymerization protocol with high total yields up to 61 %. The synthetic protocol is verified valid among 7 monomers and 8 polymers. Most importantly, all 8 conjugated polymers have strong solid‐state emission with high photoluminescence quantum yields up to 24 %. Furthermore, 4 polymers exhibit high ambipolar field effect mobility up to 10−2 cm2 V−1 s−1. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.202319997 |