Loading…

Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools

This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine tools & manufacture 2007-02, Vol.47 (2), p.376-387
Main Authors: Kang, Yuan, Chang, Chuan-Wei, Huang, Yuanruey, Hsu, Chuag-Liang, Nieh, I-Fu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3
cites cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3
container_end_page 387
container_issue 2
container_start_page 376
container_title International journal of machine tools & manufacture
container_volume 47
creator Kang, Yuan
Chang, Chuan-Wei
Huang, Yuanruey
Hsu, Chuag-Liang
Nieh, I-Fu
description This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.
doi_str_mv 10.1016/j.ijmachtools.2006.03.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29700908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695506000848</els_id><sourcerecordid>29700908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</originalsourceid><addsrcrecordid>eNqNkE-PFCEQxYnRxHH1O-BBb90W0zQNRzPxX7IbL3omNBQOYzeMwKxZP72Ms1GPe3rJy69eVT1CXjLoGTDx5tCHw2rsvqa0lH4LIHoYeoDpEdkwOaluyyZ4TDYgFXRCjeNT8qyUAwAwObANub1JLvhgTQ0p0uSpoRFP2SxN6s-Uv9NTDUv4FeI3ur-bc3DUh6ViLtSnTOseqU3rEWP5m9C8vLYAh41YL3aI9HxliEj_XPqcPPFmKfjiXq_I1_fvvuw-dtefP3zavb3uLOeydpOdt4ZPXEoQg-TWOGlmmOdRgp8dExa5YGiVMO7sOzMOdhSOCzMZrtAPV-T1JfeY048TlqrXUCwui4mYTkVv1QSgQDZQXUCbUykZvT7msJp8pxnoc9P6oP9rWp-b1jDo1nSbfXW_xBRrFp9NtKH8C5AcBjGoxu0uHLaPbwNmXWzAaNGFjLZql8IDtv0GJOCecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29700908</pqid></control><display><type>article</type><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><source>ScienceDirect Journals</source><creator>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</creator><creatorcontrib>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</creatorcontrib><description>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/j.ijmachtools.2006.03.007</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Feed-forward neural network ; Finite element analysis ; Hybrid filter ; Industrial metrology. Testing ; Machine tools ; Mechanical engineering. Machine design ; Thermal deformation</subject><ispartof>International journal of machine tools &amp; manufacture, 2007-02, Vol.47 (2), p.376-387</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</citedby><cites>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18403639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Yuan</creatorcontrib><creatorcontrib>Chang, Chuan-Wei</creatorcontrib><creatorcontrib>Huang, Yuanruey</creatorcontrib><creatorcontrib>Hsu, Chuag-Liang</creatorcontrib><creatorcontrib>Nieh, I-Fu</creatorcontrib><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><title>International journal of machine tools &amp; manufacture</title><description>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Feed-forward neural network</subject><subject>Finite element analysis</subject><subject>Hybrid filter</subject><subject>Industrial metrology. Testing</subject><subject>Machine tools</subject><subject>Mechanical engineering. Machine design</subject><subject>Thermal deformation</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkE-PFCEQxYnRxHH1O-BBb90W0zQNRzPxX7IbL3omNBQOYzeMwKxZP72Ms1GPe3rJy69eVT1CXjLoGTDx5tCHw2rsvqa0lH4LIHoYeoDpEdkwOaluyyZ4TDYgFXRCjeNT8qyUAwAwObANub1JLvhgTQ0p0uSpoRFP2SxN6s-Uv9NTDUv4FeI3ur-bc3DUh6ViLtSnTOseqU3rEWP5m9C8vLYAh41YL3aI9HxliEj_XPqcPPFmKfjiXq_I1_fvvuw-dtefP3zavb3uLOeydpOdt4ZPXEoQg-TWOGlmmOdRgp8dExa5YGiVMO7sOzMOdhSOCzMZrtAPV-T1JfeY048TlqrXUCwui4mYTkVv1QSgQDZQXUCbUykZvT7msJp8pxnoc9P6oP9rWp-b1jDo1nSbfXW_xBRrFp9NtKH8C5AcBjGoxu0uHLaPbwNmXWzAaNGFjLZql8IDtv0GJOCecg</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Kang, Yuan</creator><creator>Chang, Chuan-Wei</creator><creator>Huang, Yuanruey</creator><creator>Hsu, Chuag-Liang</creator><creator>Nieh, I-Fu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070201</creationdate><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><author>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Feed-forward neural network</topic><topic>Finite element analysis</topic><topic>Hybrid filter</topic><topic>Industrial metrology. Testing</topic><topic>Machine tools</topic><topic>Mechanical engineering. Machine design</topic><topic>Thermal deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yuan</creatorcontrib><creatorcontrib>Chang, Chuan-Wei</creatorcontrib><creatorcontrib>Huang, Yuanruey</creatorcontrib><creatorcontrib>Hsu, Chuag-Liang</creatorcontrib><creatorcontrib>Nieh, I-Fu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yuan</au><au>Chang, Chuan-Wei</au><au>Huang, Yuanruey</au><au>Hsu, Chuag-Liang</au><au>Nieh, I-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>47</volume><issue>2</issue><spage>376</spage><epage>387</epage><pages>376-387</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmachtools.2006.03.007</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2007-02, Vol.47 (2), p.376-387
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_29700908
source ScienceDirect Journals
subjects Applied sciences
Exact sciences and technology
Feed-forward neural network
Finite element analysis
Hybrid filter
Industrial metrology. Testing
Machine tools
Mechanical engineering. Machine design
Thermal deformation
title Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20a%20neural%20network%20utilizing%20hybrid%20filters%20for%20the%20compensation%20of%20thermal%20deformation%20in%20machine%20tools&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kang,%20Yuan&rft.date=2007-02-01&rft.volume=47&rft.issue=2&rft.spage=376&rft.epage=387&rft.pages=376-387&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/j.ijmachtools.2006.03.007&rft_dat=%3Cproquest_cross%3E29700908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29700908&rft_id=info:pmid/&rfr_iscdi=true