Loading…
Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools
This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and...
Saved in:
Published in: | International journal of machine tools & manufacture 2007-02, Vol.47 (2), p.376-387 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3 |
container_end_page | 387 |
container_issue | 2 |
container_start_page | 376 |
container_title | International journal of machine tools & manufacture |
container_volume | 47 |
creator | Kang, Yuan Chang, Chuan-Wei Huang, Yuanruey Hsu, Chuag-Liang Nieh, I-Fu |
description | This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements. |
doi_str_mv | 10.1016/j.ijmachtools.2006.03.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29700908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695506000848</els_id><sourcerecordid>29700908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</originalsourceid><addsrcrecordid>eNqNkE-PFCEQxYnRxHH1O-BBb90W0zQNRzPxX7IbL3omNBQOYzeMwKxZP72Ms1GPe3rJy69eVT1CXjLoGTDx5tCHw2rsvqa0lH4LIHoYeoDpEdkwOaluyyZ4TDYgFXRCjeNT8qyUAwAwObANub1JLvhgTQ0p0uSpoRFP2SxN6s-Uv9NTDUv4FeI3ur-bc3DUh6ViLtSnTOseqU3rEWP5m9C8vLYAh41YL3aI9HxliEj_XPqcPPFmKfjiXq_I1_fvvuw-dtefP3zavb3uLOeydpOdt4ZPXEoQg-TWOGlmmOdRgp8dExa5YGiVMO7sOzMOdhSOCzMZrtAPV-T1JfeY048TlqrXUCwui4mYTkVv1QSgQDZQXUCbUykZvT7msJp8pxnoc9P6oP9rWp-b1jDo1nSbfXW_xBRrFp9NtKH8C5AcBjGoxu0uHLaPbwNmXWzAaNGFjLZql8IDtv0GJOCecg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29700908</pqid></control><display><type>article</type><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><source>ScienceDirect Journals</source><creator>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</creator><creatorcontrib>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</creatorcontrib><description>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/j.ijmachtools.2006.03.007</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Exact sciences and technology ; Feed-forward neural network ; Finite element analysis ; Hybrid filter ; Industrial metrology. Testing ; Machine tools ; Mechanical engineering. Machine design ; Thermal deformation</subject><ispartof>International journal of machine tools & manufacture, 2007-02, Vol.47 (2), p.376-387</ispartof><rights>2006 Elsevier Ltd</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</citedby><cites>FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18403639$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Yuan</creatorcontrib><creatorcontrib>Chang, Chuan-Wei</creatorcontrib><creatorcontrib>Huang, Yuanruey</creatorcontrib><creatorcontrib>Hsu, Chuag-Liang</creatorcontrib><creatorcontrib>Nieh, I-Fu</creatorcontrib><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><title>International journal of machine tools & manufacture</title><description>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Feed-forward neural network</subject><subject>Finite element analysis</subject><subject>Hybrid filter</subject><subject>Industrial metrology. Testing</subject><subject>Machine tools</subject><subject>Mechanical engineering. Machine design</subject><subject>Thermal deformation</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkE-PFCEQxYnRxHH1O-BBb90W0zQNRzPxX7IbL3omNBQOYzeMwKxZP72Ms1GPe3rJy69eVT1CXjLoGTDx5tCHw2rsvqa0lH4LIHoYeoDpEdkwOaluyyZ4TDYgFXRCjeNT8qyUAwAwObANub1JLvhgTQ0p0uSpoRFP2SxN6s-Uv9NTDUv4FeI3ur-bc3DUh6ViLtSnTOseqU3rEWP5m9C8vLYAh41YL3aI9HxliEj_XPqcPPFmKfjiXq_I1_fvvuw-dtefP3zavb3uLOeydpOdt4ZPXEoQg-TWOGlmmOdRgp8dExa5YGiVMO7sOzMOdhSOCzMZrtAPV-T1JfeY048TlqrXUCwui4mYTkVv1QSgQDZQXUCbUykZvT7msJp8pxnoc9P6oP9rWp-b1jDo1nSbfXW_xBRrFp9NtKH8C5AcBjGoxu0uHLaPbwNmXWzAaNGFjLZql8IDtv0GJOCecg</recordid><startdate>20070201</startdate><enddate>20070201</enddate><creator>Kang, Yuan</creator><creator>Chang, Chuan-Wei</creator><creator>Huang, Yuanruey</creator><creator>Hsu, Chuag-Liang</creator><creator>Nieh, I-Fu</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20070201</creationdate><title>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</title><author>Kang, Yuan ; Chang, Chuan-Wei ; Huang, Yuanruey ; Hsu, Chuag-Liang ; Nieh, I-Fu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Feed-forward neural network</topic><topic>Finite element analysis</topic><topic>Hybrid filter</topic><topic>Industrial metrology. Testing</topic><topic>Machine tools</topic><topic>Mechanical engineering. Machine design</topic><topic>Thermal deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Yuan</creatorcontrib><creatorcontrib>Chang, Chuan-Wei</creatorcontrib><creatorcontrib>Huang, Yuanruey</creatorcontrib><creatorcontrib>Hsu, Chuag-Liang</creatorcontrib><creatorcontrib>Nieh, I-Fu</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Yuan</au><au>Chang, Chuan-Wei</au><au>Huang, Yuanruey</au><au>Hsu, Chuag-Liang</au><au>Nieh, I-Fu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>2007-02-01</date><risdate>2007</risdate><volume>47</volume><issue>2</issue><spage>376</spage><epage>387</epage><pages>376-387</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>This study proposes a modified method that combines feed-forward neural network (FNN) and hybrid filters to improve the accuracy and reduce computation times for the prediction of thermal deformation in a machine tool. The hybrid filter consists of the linear regression (LR), moving average (MA) and autoregression (AR). Their outputs serve as input of FNN, which are estimated by the static and dynamic relationships between the temperature distributions and thermal deformations. This modified method enables the propagation accuracy between input and output layers of a static FNN to be improved and the learning time to be reduced. Furthermore, the modified method is compared with other three ones, which are traditional ARMA, FNN, and FNN combined with LR by numerical analysis and practical experiments. In analysis, the error margins of various approaches are compared using a finite element model that is determined for the relationships between thermal deformation and temperature distribution. Also, practical experiments of these approaches for a grinding machine are realized to compare the deformation predications according to temperature measurements.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijmachtools.2006.03.007</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 2007-02, Vol.47 (2), p.376-387 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_29700908 |
source | ScienceDirect Journals |
subjects | Applied sciences Exact sciences and technology Feed-forward neural network Finite element analysis Hybrid filter Industrial metrology. Testing Machine tools Mechanical engineering. Machine design Thermal deformation |
title | Modification of a neural network utilizing hybrid filters for the compensation of thermal deformation in machine tools |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A19%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20a%20neural%20network%20utilizing%20hybrid%20filters%20for%20the%20compensation%20of%20thermal%20deformation%20in%20machine%20tools&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kang,%20Yuan&rft.date=2007-02-01&rft.volume=47&rft.issue=2&rft.spage=376&rft.epage=387&rft.pages=376-387&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/j.ijmachtools.2006.03.007&rft_dat=%3Cproquest_cross%3E29700908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-7cb2a4748806384cad8ab0bb580fbd16ce461ec96adab0bda53c56d46a7a49ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29700908&rft_id=info:pmid/&rfr_iscdi=true |