Loading…

Electronic transport in dielectrophoretically grown nanowires

Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2006-12, Vol.41 (24), p.8166-8172
Main Authors: HARROWER, C. T, OLIVER, D. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-006-0392-1