Loading…
Electronic transport in dielectrophoretically grown nanowires
Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied...
Saved in:
Published in: | Journal of materials science 2006-12, Vol.41 (24), p.8166-8172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43 |
container_end_page | 8172 |
container_issue | 24 |
container_start_page | 8166 |
container_title | Journal of materials science |
container_volume | 41 |
creator | HARROWER, C. T OLIVER, D. R |
description | Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire. |
doi_str_mv | 10.1007/s10853-006-0392-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29719205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082187224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2AKG6i9-YxySxcSKkPKLjRdUjTjE6ZTmoypfTfmzIFwYWru7jfOXA-Qi4R7hBA3ScELTkFKCnwilE8IiOUilOhgR-TEQBjlIkST8lZSksAkIrhiDxMW-_6GLrGFX20XVqH2BdNVywaP3zWXyH6vnG2bXfFZwzbruhsF7ZN9OmcnNS2Tf7icMfk42n6Pnmhs7fn18njjDpeqp46LzRizVXtK-0leuYUirlE7QS4uZKinHvvS1WpheRCCxTloq7BlrUDbgUfk5uhdx3D98an3qya5Hzb2s6HTTKsUlgxkBm8_RfMlhhqxdi-8-oPugyb2OUZhjFZKaig0pnCgXIxpBR9bdaxWdm4y1Vmb94M5k02b_bmDebM9aHZpqytzlpdk36Dmus8nfMfUf-CjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259709098</pqid></control><display><type>article</type><title>Electronic transport in dielectrophoretically grown nanowires</title><source>Springer Nature</source><creator>HARROWER, C. T ; OLIVER, D. R</creator><creatorcontrib>HARROWER, C. T ; OLIVER, D. R</creatorcontrib><description>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0392-1</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Capping ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductance ; Cross-disciplinary physics: materials science; rheology ; Dielectrophoresis ; Dodecane ; Electrodes ; Electron transport ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Electronics ; Exact sciences and technology ; Gold ; Histograms ; Materials science ; Metals. Metallurgy ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Physics ; Quantum wires ; Resistance ; Solvents ; Transport ; Wire</subject><ispartof>Journal of materials science, 2006-12, Vol.41 (24), p.8166-8172</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</citedby><cites>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18385183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HARROWER, C. T</creatorcontrib><creatorcontrib>OLIVER, D. R</creatorcontrib><title>Electronic transport in dielectrophoretically grown nanowires</title><title>Journal of materials science</title><description>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</description><subject>Applied sciences</subject><subject>Capping</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectrophoresis</subject><subject>Dodecane</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Histograms</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Resistance</subject><subject>Solvents</subject><subject>Transport</subject><subject>Wire</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN2AKG6i9-YxySxcSKkPKLjRdUjTjE6ZTmoypfTfmzIFwYWru7jfOXA-Qi4R7hBA3ScELTkFKCnwilE8IiOUilOhgR-TEQBjlIkST8lZSksAkIrhiDxMW-_6GLrGFX20XVqH2BdNVywaP3zWXyH6vnG2bXfFZwzbruhsF7ZN9OmcnNS2Tf7icMfk42n6Pnmhs7fn18njjDpeqp46LzRizVXtK-0leuYUirlE7QS4uZKinHvvS1WpheRCCxTloq7BlrUDbgUfk5uhdx3D98an3qya5Hzb2s6HTTKsUlgxkBm8_RfMlhhqxdi-8-oPugyb2OUZhjFZKaig0pnCgXIxpBR9bdaxWdm4y1Vmb94M5k02b_bmDebM9aHZpqytzlpdk36Dmus8nfMfUf-CjQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>HARROWER, C. T</creator><creator>OLIVER, D. R</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061201</creationdate><title>Electronic transport in dielectrophoretically grown nanowires</title><author>HARROWER, C. T ; OLIVER, D. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Capping</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectrophoresis</topic><topic>Dodecane</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Histograms</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Resistance</topic><topic>Solvents</topic><topic>Transport</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARROWER, C. T</creatorcontrib><creatorcontrib>OLIVER, D. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARROWER, C. T</au><au>OLIVER, D. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in dielectrophoretically grown nanowires</atitle><jtitle>Journal of materials science</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>41</volume><issue>24</issue><spage>8166</spage><epage>8172</epage><pages>8166-8172</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0392-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2006-12, Vol.41 (24), p.8166-8172 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_miscellaneous_29719205 |
source | Springer Nature |
subjects | Applied sciences Capping Condensed matter: electronic structure, electrical, magnetic, and optical properties Conductance Cross-disciplinary physics: materials science rheology Dielectrophoresis Dodecane Electrodes Electron transport Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Electronics Exact sciences and technology Gold Histograms Materials science Metals. Metallurgy Nanoparticles Nanoscale materials and structures: fabrication and characterization Nanowires Physics Quantum wires Resistance Solvents Transport Wire |
title | Electronic transport in dielectrophoretically grown nanowires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20dielectrophoretically%20grown%20nanowires&rft.jtitle=Journal%20of%20materials%20science&rft.au=HARROWER,%20C.%20T&rft.date=2006-12-01&rft.volume=41&rft.issue=24&rft.spage=8166&rft.epage=8172&rft.pages=8166-8172&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0392-1&rft_dat=%3Cproquest_cross%3E1082187224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259709098&rft_id=info:pmid/&rfr_iscdi=true |