Loading…

Electronic transport in dielectrophoretically grown nanowires

Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2006-12, Vol.41 (24), p.8166-8172
Main Authors: HARROWER, C. T, OLIVER, D. R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43
cites cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43
container_end_page 8172
container_issue 24
container_start_page 8166
container_title Journal of materials science
container_volume 41
creator HARROWER, C. T
OLIVER, D. R
description Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.
doi_str_mv 10.1007/s10853-006-0392-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29719205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082187224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wN2AKG6i9-YxySxcSKkPKLjRdUjTjE6ZTmoypfTfmzIFwYWru7jfOXA-Qi4R7hBA3ScELTkFKCnwilE8IiOUilOhgR-TEQBjlIkST8lZSksAkIrhiDxMW-_6GLrGFX20XVqH2BdNVywaP3zWXyH6vnG2bXfFZwzbruhsF7ZN9OmcnNS2Tf7icMfk42n6Pnmhs7fn18njjDpeqp46LzRizVXtK-0leuYUirlE7QS4uZKinHvvS1WpheRCCxTloq7BlrUDbgUfk5uhdx3D98an3qya5Hzb2s6HTTKsUlgxkBm8_RfMlhhqxdi-8-oPugyb2OUZhjFZKaig0pnCgXIxpBR9bdaxWdm4y1Vmb94M5k02b_bmDebM9aHZpqytzlpdk36Dmus8nfMfUf-CjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259709098</pqid></control><display><type>article</type><title>Electronic transport in dielectrophoretically grown nanowires</title><source>Springer Nature</source><creator>HARROWER, C. T ; OLIVER, D. R</creator><creatorcontrib>HARROWER, C. T ; OLIVER, D. R</creatorcontrib><description>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-006-0392-1</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Capping ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Conductance ; Cross-disciplinary physics: materials science; rheology ; Dielectrophoresis ; Dodecane ; Electrodes ; Electron transport ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Electronics ; Exact sciences and technology ; Gold ; Histograms ; Materials science ; Metals. Metallurgy ; Nanoparticles ; Nanoscale materials and structures: fabrication and characterization ; Nanowires ; Physics ; Quantum wires ; Resistance ; Solvents ; Transport ; Wire</subject><ispartof>Journal of materials science, 2006-12, Vol.41 (24), p.8166-8172</ispartof><rights>2007 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2006). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</citedby><cites>FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18385183$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HARROWER, C. T</creatorcontrib><creatorcontrib>OLIVER, D. R</creatorcontrib><title>Electronic transport in dielectrophoretically grown nanowires</title><title>Journal of materials science</title><description>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</description><subject>Applied sciences</subject><subject>Capping</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Conductance</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dielectrophoresis</subject><subject>Dodecane</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Gold</subject><subject>Histograms</subject><subject>Materials science</subject><subject>Metals. Metallurgy</subject><subject>Nanoparticles</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanowires</subject><subject>Physics</subject><subject>Quantum wires</subject><subject>Resistance</subject><subject>Solvents</subject><subject>Transport</subject><subject>Wire</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wN2AKG6i9-YxySxcSKkPKLjRdUjTjE6ZTmoypfTfmzIFwYWru7jfOXA-Qi4R7hBA3ScELTkFKCnwilE8IiOUilOhgR-TEQBjlIkST8lZSksAkIrhiDxMW-_6GLrGFX20XVqH2BdNVywaP3zWXyH6vnG2bXfFZwzbruhsF7ZN9OmcnNS2Tf7icMfk42n6Pnmhs7fn18njjDpeqp46LzRizVXtK-0leuYUirlE7QS4uZKinHvvS1WpheRCCxTloq7BlrUDbgUfk5uhdx3D98an3qya5Hzb2s6HTTKsUlgxkBm8_RfMlhhqxdi-8-oPugyb2OUZhjFZKaig0pnCgXIxpBR9bdaxWdm4y1Vmb94M5k02b_bmDebM9aHZpqytzlpdk36Dmus8nfMfUf-CjQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>HARROWER, C. T</creator><creator>OLIVER, D. R</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20061201</creationdate><title>Electronic transport in dielectrophoretically grown nanowires</title><author>HARROWER, C. T ; OLIVER, D. R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Capping</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Conductance</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dielectrophoresis</topic><topic>Dodecane</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Gold</topic><topic>Histograms</topic><topic>Materials science</topic><topic>Metals. Metallurgy</topic><topic>Nanoparticles</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanowires</topic><topic>Physics</topic><topic>Quantum wires</topic><topic>Resistance</topic><topic>Solvents</topic><topic>Transport</topic><topic>Wire</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HARROWER, C. T</creatorcontrib><creatorcontrib>OLIVER, D. R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HARROWER, C. T</au><au>OLIVER, D. R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic transport in dielectrophoretically grown nanowires</atitle><jtitle>Journal of materials science</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>41</volume><issue>24</issue><spage>8166</spage><epage>8172</epage><pages>8166-8172</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Gold nanoparticles with mean diameter 10–15 nm have been synthesized and stabilized using capping agents in a polar solvent (water) and a non-polar solvent (dodecane). Using two gold bond wires (diameter 0.25 mm and separated by less than 10 μm) as electrodes a sinusoidal driving voltage was applied to the solution. The resulting dielectrophoresis of the solution caused deposition of these nanoparticles at the electrodes and the formation of a wire between the electrodes. Conductance studies of the wire as the final connection formed yielded evidence for low-dimensional transport character in the form of discrete (Landauer) conductance steps. Histogram analysis of the conductance data further supports the conclusion that as the wire forms the capping agents do not always contribute to the electronic transport through the wire.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10853-006-0392-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2006-12, Vol.41 (24), p.8166-8172
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_29719205
source Springer Nature
subjects Applied sciences
Capping
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Conductance
Cross-disciplinary physics: materials science
rheology
Dielectrophoresis
Dodecane
Electrodes
Electron transport
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Electronics
Exact sciences and technology
Gold
Histograms
Materials science
Metals. Metallurgy
Nanoparticles
Nanoscale materials and structures: fabrication and characterization
Nanowires
Physics
Quantum wires
Resistance
Solvents
Transport
Wire
title Electronic transport in dielectrophoretically grown nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A01%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20transport%20in%20dielectrophoretically%20grown%20nanowires&rft.jtitle=Journal%20of%20materials%20science&rft.au=HARROWER,%20C.%20T&rft.date=2006-12-01&rft.volume=41&rft.issue=24&rft.spage=8166&rft.epage=8172&rft.pages=8166-8172&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1007/s10853-006-0392-1&rft_dat=%3Cproquest_cross%3E1082187224%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ce4811f37fe98e51e2c714b518c40cb7546beee6797d53484146dff0a6fc03a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259709098&rft_id=info:pmid/&rfr_iscdi=true