Loading…
Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation
Research Mining Institute, Inc., Ostrava-Radvanice, in cooperation with Dept. of Theory And Technology of Explosives of University of Pardubice and Klokner Institute of CTU in Prague, has performed three series of experiments examining methane–air mixture explosions and their impact on 14 and 29 cm...
Saved in:
Published in: | Journal of loss prevention in the process industries 2006-03, Vol.19 (2), p.280-287 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Research Mining Institute, Inc., Ostrava-Radvanice, in cooperation with Dept. of Theory And Technology of Explosives of University of Pardubice and Klokner Institute of CTU in Prague, has performed three series of experiments examining methane–air mixture explosions and their impact on 14 and 29
cm thick wall. The project was named ‘Modeling Pressure Fields Effects on Engineering Structures During Accidental Explosions of Gases in Buildings’ and was sponsored by Grant Agency of Czech Republic (project No. 103/01/0039). The project is aimed at deeper understanding of pressure field effect upon the structures. Methane-air mixture explosion was used to generate the blast wave. The geometrical configuration of the environment resembled a room of an average size, such as larger kitchen. Preliminary simulations were made by AutoReaGas code (Century Dynamics and TNO). The design phase was followed by tests in an experimental mine in Stramberk. Two masonry dams were build in the mine, with cross-section areas of 10.2
m
2 and longitudinal distance of 5.7
m, creating an explosion chamber with a volume of 58
m
3. Two vent openings with an adjustable free cross-section were used to control the maximum overpressure inside the chamber. The concentration of methane-air mixture was approximately 9.5% (vol.) and the volumes of the clouds were 5.25, 10.2 and 15.3
m
3 respectively. The generated blast wave overpressures inside the chamber ranged between 1 and 150
kPa. According to experimental results a calibration of the code was performed. After the calibration it is possible to make relatively accurate simulations in similar geometry and to calculate the pressure loading of the structure at any spot in the simulated space. This paper describes the experiments performed and compares experimental and computational results. |
---|---|
ISSN: | 0950-4230 |
DOI: | 10.1016/j.jlp.2005.06.038 |