Loading…
Transparent UV curable antistatic hybrid coatings on polycarbonate prepared by the sol–gel method
UV curable, hard, and transparent organic–inorganic hybrid coatings with covalent links between the inorganic and the organic networks were prepared by the sol–gel method. These hybrid coating materials were synthesised using a commercially available, acrylate end-capped polyurethane oligomeric resi...
Saved in:
Published in: | Progress in organic coatings 2004-12, Vol.51 (4), p.312-319 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | UV curable, hard, and transparent organic–inorganic hybrid coatings with covalent links between the inorganic and the organic networks were prepared by the sol–gel method. These hybrid coating materials were synthesised using a commercially available, acrylate end-capped polyurethane oligomeric resin, hexanedioldiacrylate (HDDA) as a reactive solvent, 3-(trimethoxysilyl)propoxymethacrylate (MPTMS) as a coupling agent between the organic and inorganic phase, and a metal alkoxide, tetraethylorthosilicate (TEOS). The materials were applied onto polycarbonate sheets and UV cured, followed by a thermal treatment to give a transparent coating with a good adhesion and abrasion resistance. The high transmission and the thermogravimetric behaviour indicate the presence of a nanoscale hybrid composition. In a taber abrasion test, uncoated polycarbonate sheets exhibit a 48% decrease in light transmittance at 633
nm after 300 wear cycles, whereas the hybrid coating system containing 10
wt% silica shows only 10% decrease in light transmittance. For obtaining antistatic coatings, an intrinsically conductive polymer (ICP) was added to the optimised coating formulation. It is shown that the surface resistivity of the organic–inorganic hybrid coating can be reduced from 10
16 to 10
6
Ω for a high concentration of ICP in the coating formulation. |
---|---|
ISSN: | 0300-9440 1873-331X |
DOI: | 10.1016/j.porgcoat.2004.07.020 |