Loading…
Mechanism of the Degradation of 1,4-Dioxane in Dilute Aqueous Solution Using the UV/Hydrogen Peroxide Process
1,4-Dioxane is an EPA priority pollutant often found in contaminated groundwaters and industrial effluents. The common techniques used for water purification are not applicable to 1,4-dioxane, and the currently used method (distillation) is laborious and expensive. This study aims to understand the...
Saved in:
Published in: | Environmental science & technology 1998-06, Vol.32 (11), p.1588-1595 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 1,4-Dioxane is an EPA priority pollutant often found in contaminated groundwaters and industrial effluents. The common techniques used for water purification are not applicable to 1,4-dioxane, and the currently used method (distillation) is laborious and expensive. This study aims to understand the degradation mechanism of 1,4-dioxane and its byproducts in dilute aqueous solution toward complete mineralization, by using the UV/H2O2 process in a UV semibatch reactor. The decay of 1,4-dioxane generated several intermediates identified and quantified as aldehydes (formaldehyde, acetaldehyde, and glyoxal), organic acids (formic, methoxyacetic, acetic, glycolic, glyoxylic, and oxalic) and the mono- and diformate esters of 1,2-ethanediol. Measurement of the total organic carbon (TOC) during the treatment indicated a good agreement between the experimentally determined TOC values and those calculated from the quantified reaction intermediates, ending in complete mineralization. A reaction mechanism, which accounts for the observed intermediate products and their time profiles during the treatment, is proposed. Considering the efficacy of the 1,4-dioxane removal from dilute aqueous solutions, as shown in this work, the present study can be regarded as a model for industrially affordable Advanced Oxidation Technologies. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es970633m |