Loading…

Wall slippage with siloxane gum and silicon rubbers

A slip analysis has been developed to calculate the slip velocities from the capillary rheometry data for a polydimethylsiloxane (PDMS) gum, and two silicon rubber compounds. The analysis generalises the classical Mooney method [J. Rheol. 2 (1931) 210–222] to incorporate the influence of die geometr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of non-Newtonian fluid mechanics 2005-08, Vol.129 (1), p.38-45
Main Authors: Crawford, B., Watterson, J.K., Spedding, P.L., Raghunathan, S., Herron, W., Proctor, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A slip analysis has been developed to calculate the slip velocities from the capillary rheometry data for a polydimethylsiloxane (PDMS) gum, and two silicon rubber compounds. The analysis generalises the classical Mooney method [J. Rheol. 2 (1931) 210–222] to incorporate the influence of die geometry on the slip behaviour. For the PDMS gum, no slippage was observed below a stress level of about 60 kPa, and there was a jump in the slip velocity at a stress level of about 80 kPa. The complex rheological behaviour of the rubbers meant that the analysis was only applicable at higher stress levels. For each material, a reasonable fit to the slip velocity was obtained using a generalised Navier slip law, which can easily be implemented into computational fluid dynamic simulations. Ultimately, a more realistic slip law is required to model the observed flow behaviour correctly.
ISSN:0377-0257
1873-2631
DOI:10.1016/j.jnnfm.2005.05.004