Loading…
Wall slippage with siloxane gum and silicon rubbers
A slip analysis has been developed to calculate the slip velocities from the capillary rheometry data for a polydimethylsiloxane (PDMS) gum, and two silicon rubber compounds. The analysis generalises the classical Mooney method [J. Rheol. 2 (1931) 210–222] to incorporate the influence of die geometr...
Saved in:
Published in: | Journal of non-Newtonian fluid mechanics 2005-08, Vol.129 (1), p.38-45 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A slip analysis has been developed to calculate the slip velocities from the capillary rheometry data for a polydimethylsiloxane (PDMS) gum, and two silicon rubber compounds. The analysis generalises the classical Mooney method [J. Rheol. 2 (1931) 210–222] to incorporate the influence of die geometry on the slip behaviour. For the PDMS gum, no slippage was observed below a stress level of about 60 kPa, and there was a jump in the slip velocity at a stress level of about 80 kPa. The complex rheological behaviour of the rubbers meant that the analysis was only applicable at higher stress levels. For each material, a reasonable fit to the slip velocity was obtained using a generalised Navier slip law, which can easily be implemented into computational fluid dynamic simulations. Ultimately, a more realistic slip law is required to model the observed flow behaviour correctly. |
---|---|
ISSN: | 0377-0257 1873-2631 |
DOI: | 10.1016/j.jnnfm.2005.05.004 |