Loading…

Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method

In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a different...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2006-01, Vol.52 (1), p.99-110
Main Authors: van Sint Annaland, M., Dijkhuizen, W., Deen, N. G., Kuipers, J. A. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673
cites cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673
container_end_page 110
container_issue 1
container_start_page 99
container_title AIChE journal
container_volume 52
creator van Sint Annaland, M.
Dijkhuizen, W.
Deen, N. G.
Kuipers, J. A. M.
description In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006
doi_str_mv 10.1002/aic.10607
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29757548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>958660261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</originalsourceid><addsrcrecordid>eNp1kFlLxDAUhYMoOC4P_oMiKPhQTdKkt3nUUUdxUMTtMaSZVKNtMyaty78347iA4NNd-M65yUFog-BdgjHdU1bHJsewgAaEM0i5wHwRDTDGJI0LsoxWQniME4WCDtDled8Yb7Wqk2CbvladdW3iqqQ0D-rFOj_r71VIyr4saxOSPtj2PlFJlh4mlXdtl3Ze6afZsjHdg5usoaVK1cGsf9VVdHN8dD08SccXo9Ph_jjVTBSQGshEpiBjguZ8QkkOJde51hg0YeWEsYLDhBXUYJNFEkRJgQiTAa-KEueQraLtue_Uu-fehE42NmhT16o1rg-SCuDAWRHBzT_go-t9G98miRAsJsNohHbmkPYuBG8qOfW2Uf5dEixnycqYrPxMNrJbX4YqxOAqr1ptw68AGMnzfHZ4b8692tq8_28o90-H387pXGFDZ95-FMo_yfhj4PLufCRHtwcHZ5dnY3mVfQB_tJOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199400042</pqid></control><display><type>article</type><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><source>Wiley</source><creator>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</creator><creatorcontrib>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</creatorcontrib><description>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10607</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; bubble rise velocity ; bubble shape ; Bubbles ; Chemical engineering ; direct numerical simulation ; drag coefficient ; Exact sciences and technology ; front tracking ; Gases ; Numerical analysis</subject><ispartof>AIChE journal, 2006-01, Vol.52 (1), p.99-110</ispartof><rights>Copyright © 2005 American Institute of Chemical Engineers (AIChE)</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</citedby><cites>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17416668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Sint Annaland, M.</creatorcontrib><creatorcontrib>Dijkhuizen, W.</creatorcontrib><creatorcontrib>Deen, N. G.</creatorcontrib><creatorcontrib>Kuipers, J. A. M.</creatorcontrib><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</description><subject>Applied sciences</subject><subject>bubble rise velocity</subject><subject>bubble shape</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>direct numerical simulation</subject><subject>drag coefficient</subject><subject>Exact sciences and technology</subject><subject>front tracking</subject><subject>Gases</subject><subject>Numerical analysis</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kFlLxDAUhYMoOC4P_oMiKPhQTdKkt3nUUUdxUMTtMaSZVKNtMyaty78347iA4NNd-M65yUFog-BdgjHdU1bHJsewgAaEM0i5wHwRDTDGJI0LsoxWQniME4WCDtDled8Yb7Wqk2CbvladdW3iqqQ0D-rFOj_r71VIyr4saxOSPtj2PlFJlh4mlXdtl3Ze6afZsjHdg5usoaVK1cGsf9VVdHN8dD08SccXo9Ph_jjVTBSQGshEpiBjguZ8QkkOJde51hg0YeWEsYLDhBXUYJNFEkRJgQiTAa-KEueQraLtue_Uu-fehE42NmhT16o1rg-SCuDAWRHBzT_go-t9G98miRAsJsNohHbmkPYuBG8qOfW2Uf5dEixnycqYrPxMNrJbX4YqxOAqr1ptw68AGMnzfHZ4b8692tq8_28o90-H387pXGFDZ95-FMo_yfhj4PLufCRHtwcHZ5dnY3mVfQB_tJOU</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>van Sint Annaland, M.</creator><creator>Dijkhuizen, W.</creator><creator>Deen, N. G.</creator><creator>Kuipers, J. A. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200601</creationdate><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><author>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>bubble rise velocity</topic><topic>bubble shape</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>direct numerical simulation</topic><topic>drag coefficient</topic><topic>Exact sciences and technology</topic><topic>front tracking</topic><topic>Gases</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Sint Annaland, M.</creatorcontrib><creatorcontrib>Dijkhuizen, W.</creatorcontrib><creatorcontrib>Deen, N. G.</creatorcontrib><creatorcontrib>Kuipers, J. A. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Sint Annaland, M.</au><au>Dijkhuizen, W.</au><au>Deen, N. G.</au><au>Kuipers, J. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2006-01</date><risdate>2006</risdate><volume>52</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10607</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2006-01, Vol.52 (1), p.99-110
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_29757548
source Wiley
subjects Applied sciences
bubble rise velocity
bubble shape
Bubbles
Chemical engineering
direct numerical simulation
drag coefficient
Exact sciences and technology
front tracking
Gases
Numerical analysis
title Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20behavior%20of%20gas%20bubbles%20using%20a%203-D%20front-tracking%20method&rft.jtitle=AIChE%20journal&rft.au=van%20Sint%20Annaland,%20M.&rft.date=2006-01&rft.volume=52&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10607&rft_dat=%3Cproquest_cross%3E958660261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199400042&rft_id=info:pmid/&rfr_iscdi=true