Loading…
Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method
In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a different...
Saved in:
Published in: | AIChE journal 2006-01, Vol.52 (1), p.99-110 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673 |
---|---|
cites | cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673 |
container_end_page | 110 |
container_issue | 1 |
container_start_page | 99 |
container_title | AIChE journal |
container_volume | 52 |
creator | van Sint Annaland, M. Dijkhuizen, W. Deen, N. G. Kuipers, J. A. M. |
description | In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006 |
doi_str_mv | 10.1002/aic.10607 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29757548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>958660261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</originalsourceid><addsrcrecordid>eNp1kFlLxDAUhYMoOC4P_oMiKPhQTdKkt3nUUUdxUMTtMaSZVKNtMyaty78347iA4NNd-M65yUFog-BdgjHdU1bHJsewgAaEM0i5wHwRDTDGJI0LsoxWQniME4WCDtDled8Yb7Wqk2CbvladdW3iqqQ0D-rFOj_r71VIyr4saxOSPtj2PlFJlh4mlXdtl3Ze6afZsjHdg5usoaVK1cGsf9VVdHN8dD08SccXo9Ph_jjVTBSQGshEpiBjguZ8QkkOJde51hg0YeWEsYLDhBXUYJNFEkRJgQiTAa-KEueQraLtue_Uu-fehE42NmhT16o1rg-SCuDAWRHBzT_go-t9G98miRAsJsNohHbmkPYuBG8qOfW2Uf5dEixnycqYrPxMNrJbX4YqxOAqr1ptw68AGMnzfHZ4b8692tq8_28o90-H387pXGFDZ95-FMo_yfhj4PLufCRHtwcHZ5dnY3mVfQB_tJOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>199400042</pqid></control><display><type>article</type><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><source>Wiley</source><creator>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</creator><creatorcontrib>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</creatorcontrib><description>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.10607</identifier><identifier>CODEN: AICEAC</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; bubble rise velocity ; bubble shape ; Bubbles ; Chemical engineering ; direct numerical simulation ; drag coefficient ; Exact sciences and technology ; front tracking ; Gases ; Numerical analysis</subject><ispartof>AIChE journal, 2006-01, Vol.52 (1), p.99-110</ispartof><rights>Copyright © 2005 American Institute of Chemical Engineers (AIChE)</rights><rights>2006 INIST-CNRS</rights><rights>Copyright American Institute of Chemical Engineers Jan 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</citedby><cites>FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17416668$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>van Sint Annaland, M.</creatorcontrib><creatorcontrib>Dijkhuizen, W.</creatorcontrib><creatorcontrib>Deen, N. G.</creatorcontrib><creatorcontrib>Kuipers, J. A. M.</creatorcontrib><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</description><subject>Applied sciences</subject><subject>bubble rise velocity</subject><subject>bubble shape</subject><subject>Bubbles</subject><subject>Chemical engineering</subject><subject>direct numerical simulation</subject><subject>drag coefficient</subject><subject>Exact sciences and technology</subject><subject>front tracking</subject><subject>Gases</subject><subject>Numerical analysis</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kFlLxDAUhYMoOC4P_oMiKPhQTdKkt3nUUUdxUMTtMaSZVKNtMyaty78347iA4NNd-M65yUFog-BdgjHdU1bHJsewgAaEM0i5wHwRDTDGJI0LsoxWQniME4WCDtDled8Yb7Wqk2CbvladdW3iqqQ0D-rFOj_r71VIyr4saxOSPtj2PlFJlh4mlXdtl3Ze6afZsjHdg5usoaVK1cGsf9VVdHN8dD08SccXo9Ph_jjVTBSQGshEpiBjguZ8QkkOJde51hg0YeWEsYLDhBXUYJNFEkRJgQiTAa-KEueQraLtue_Uu-fehE42NmhT16o1rg-SCuDAWRHBzT_go-t9G98miRAsJsNohHbmkPYuBG8qOfW2Uf5dEixnycqYrPxMNrJbX4YqxOAqr1ptw68AGMnzfHZ4b8692tq8_28o90-H387pXGFDZ95-FMo_yfhj4PLufCRHtwcHZ5dnY3mVfQB_tJOU</recordid><startdate>200601</startdate><enddate>200601</enddate><creator>van Sint Annaland, M.</creator><creator>Dijkhuizen, W.</creator><creator>Deen, N. G.</creator><creator>Kuipers, J. A. M.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley Subscription Services</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>200601</creationdate><title>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</title><author>van Sint Annaland, M. ; Dijkhuizen, W. ; Deen, N. G. ; Kuipers, J. A. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>bubble rise velocity</topic><topic>bubble shape</topic><topic>Bubbles</topic><topic>Chemical engineering</topic><topic>direct numerical simulation</topic><topic>drag coefficient</topic><topic>Exact sciences and technology</topic><topic>front tracking</topic><topic>Gases</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Sint Annaland, M.</creatorcontrib><creatorcontrib>Dijkhuizen, W.</creatorcontrib><creatorcontrib>Deen, N. G.</creatorcontrib><creatorcontrib>Kuipers, J. A. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Sint Annaland, M.</au><au>Dijkhuizen, W.</au><au>Deen, N. G.</au><au>Kuipers, J. A. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2006-01</date><risdate>2006</risdate><volume>52</volume><issue>1</issue><spage>99</spage><epage>110</epage><pages>99-110</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><coden>AICEAC</coden><abstract>In this paper a three‐dimensional (3‐D) front‐tracking (FT) model is presented featuring a new method to evaluate the surface force model that circumvents the explicit computation of the interface curvature. This method is based on a direct calculation of the net tensile forces acting on a differential element of the interface. Our model can handle a large density and viscosity ratio and a large value of the surface tension coefficient characteristic for gas–liquid systems. First, the results of a number of test cases are presented to assess the correctness of the implementation of the interface advection and remeshing algorithms and the surface tension model. Subsequently, the computed terminal Reynolds numbers and shapes of isolated gas bubbles rising in quiescent liquids are compared with data taken from the bubble diagram of Grace. In addition drag coefficients for rising air bubbles in water were successfully computed, a system that has proven difficult to simulate by other methods, and showed good agreement with existing correlations. Finally, a number of sample calculations involving multiple bubbles are reported to demonstrate the capabilities of our three‐dimensional FT model. © 2005 American Institute of Chemical Engineers AIChE J, 2006</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/aic.10607</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2006-01, Vol.52 (1), p.99-110 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_29757548 |
source | Wiley |
subjects | Applied sciences bubble rise velocity bubble shape Bubbles Chemical engineering direct numerical simulation drag coefficient Exact sciences and technology front tracking Gases Numerical analysis |
title | Numerical simulation of behavior of gas bubbles using a 3-D front-tracking method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20behavior%20of%20gas%20bubbles%20using%20a%203-D%20front-tracking%20method&rft.jtitle=AIChE%20journal&rft.au=van%20Sint%20Annaland,%20M.&rft.date=2006-01&rft.volume=52&rft.issue=1&rft.spage=99&rft.epage=110&rft.pages=99-110&rft.issn=0001-1541&rft.eissn=1547-5905&rft.coden=AICEAC&rft_id=info:doi/10.1002/aic.10607&rft_dat=%3Cproquest_cross%3E958660261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4987-e7393a7349265d2167b5c6cc07c14bd44857d482e0e339379b2719e375f8b0673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=199400042&rft_id=info:pmid/&rfr_iscdi=true |