Loading…
Experimental and model assisted investigation of an operational strategy for the BPR under low influent concentrations
The behaviour of a pilot scale biological phosphorus removal process (BPR) of the alternating type was investigated during periods of low influent concentrations and increased hydraulic load. A process disturbance of this type result in an increase in the phosphate concentration level in the anoxic/...
Saved in:
Published in: | Water research (Oxford) 2003-04, Vol.37 (8), p.1953-1971 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The behaviour of a pilot scale biological phosphorus removal process (BPR) of the alternating type was investigated during periods of low influent concentrations and increased hydraulic load. A process disturbance of this type result in an increase in the phosphate concentration level in the anoxic/aerobic reactors and in the plant effluent shortly after the influent wastewater returns to normal strength. The accumulation of phosphorus in the system was avoided by the addition of an external carbon source either to the influent or to the effluent from the anaerobic reactor in form of sodium acetate. With the help of such an addition, the internal carbon storage compounds could be maintained at a high level, which is shown by poly-hydroxy-alcanoates (PHA) measurements. Several levels of acetate addition were investigated experimentally in order to determine a minimal amount of internally stored carbon, which could ensure the stabilization of BPR during such dynamic influent conditions. Furthermore reduction of aeration time during periods of low influent concentrations was investigated. It was observed that BPR was stabilized by combining a reduction of aeration time with carbon source addition, which maintained the internal stored carbon at a higher level. This combined control action resulted in a desired high BPR activity when the normal strength of the influent wastewater was re-established. The failure of the BPR process was sometimes observed even when comparatively high concentrations of PHA could be detected and an identification of a minimal PHA level was not possible. During this investigation an extended version of the activated sludge model No. 2 (ASM2), which includes denitrification by phosphate accumulating organisms, is used for the detailed analysis of the experiments. The model predicted the phosphorus build-up after the process disturbance as well as the performance during the stabilized experiments. Assisted by the model, the investigations indicate that a PHA limitation is not the only factor affecting the recovery of the BPR process during periods of low influent concentrations. |
---|---|
ISSN: | 0043-1354 1879-2448 |
DOI: | 10.1016/S0043-1354(02)00561-4 |