Loading…

Axial crushing of thin-walled high-strength steel sections

Quasi-static and dynamic axial crushing tests were performed on thin-walled square tubes and spot-welded top-hat sections made of high-strength steel grade DP800. The dynamic tests were conducted at velocities up to 15 m/s with an impacting mass of 600 kg in order to assess the crush behaviour, the...

Full description

Saved in:
Bibliographic Details
Published in:International journal of impact engineering 2006-05, Vol.32 (5), p.847-882
Main Authors: Tarigopula, V., Langseth, M., Hopperstad, O.S., Clausen, A.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Quasi-static and dynamic axial crushing tests were performed on thin-walled square tubes and spot-welded top-hat sections made of high-strength steel grade DP800. The dynamic tests were conducted at velocities up to 15 m/s with an impacting mass of 600 kg in order to assess the crush behaviour, the deformation force and the energy absorption. Typical collapse modes developed in the sections and the associated energy absorbing characteristics were examined and compared with previous studies on high-strength steel. A significant difference was observed between the quasi-static and the dynamic crushing tests in terms of the deformation force and impact energy absorption. As this difference is attributed to strain-rate and inertia effects, material tensile tests at elevated strain rates have been carried out. A comparison is made with analytical methods and the response was under-predicted. In addition, numerical simulations of the axial crushing of the thin-walled sections were performed and comparisons with the experimental results were satisfactory. The validated numerical model was used to study the energy absorption capacity of thin-walled sections with variations in the yield strength, sheet thickness, flange width and spot-weld spacing. Structural effectiveness differences have been captured through simulations between spot-welded top-hat sections made of mild steel and high-strength steel.
ISSN:0734-743X
1879-3509
DOI:10.1016/j.ijimpeng.2005.07.010