Loading…
Process optimization and characterization of thin films of SrFeO3-x by the pechini method
Nanostructured coatings have recently attracted increasing interest because of the possibilities of synthesizing materials with unique physical-chemical properties. Highly sophisticated surface related properties, such as optical, magnetic, electronic, catalytic, mechanical, chemical and tribologica...
Saved in:
Published in: | Journal of sol-gel science and technology 2006-06, Vol.38 (3), p.271-275 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanostructured coatings have recently attracted increasing interest because of the possibilities of synthesizing materials with unique physical-chemical properties. Highly sophisticated surface related properties, such as optical, magnetic, electronic, catalytic, mechanical, chemical and tribological properties can be obtained by advanced nanostructured coatings, making them attractive for various industrial applications. In this report we describe our efforts at developing methodology for the fabrication of SrFeO3-x based thin films using a modified Pechini method. Thin films of SrFeO3-x were fabricated using spin coating and a drop coating method developed in-house on Al2O3 and Si- substrates. The films annealed at 600 deg C for one hour show a perovskite phase. The grain size increases with increase in annealing temperature. The influence of various variables such as metal to chelant ratio, drying control reagents, calcination conditions, substrate type and mode of film formation were studied using XRD, optical microscopy, SEM and AFM. |
---|---|
ISSN: | 0928-0707 1573-4846 |
DOI: | 10.1007/s10971-006-6784-5 |