Loading…

Compacted UHMWPE fiber composites: Morphology and X-ray microdiffraction experiments

The effect of compaction conditions on UHMWPE fibers is examined by microbeam X‐ray diffraction (WAXS) and scanning electron microscopy (SEM). The morphological observations indicate that melting occurs during compaction both on the surface of the fiber as well as in its internal regions. In additio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymer science. Part B, Polymer physics Polymer physics, 2007-07, Vol.45 (13), p.1535-1541
Main Authors: Shavit-Hadar, Liron, Rein, Dmitry M., Khalfin, Rafail, Terry, Ann E., Heunen, Guido W. J. C., Cohen, Yachin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of compaction conditions on UHMWPE fibers is examined by microbeam X‐ray diffraction (WAXS) and scanning electron microscopy (SEM). The morphological observations indicate that melting occurs during compaction both on the surface of the fiber as well as in its internal regions. In addition, the recrystallized phase is nucleated on the fiber surface, possibly epitaxially. The recrystallized phase that originates from the internal regions of the fiber retains the initial highly oriented structure. WAXS microbeam measurements do not show any significant core‐shell structure in compacted single fibers. Considering the overall characteristics of the melting process during compaction, we can conclude that the hexagonal phase that appears upon heating of the fibers under moderate pressure is responsible for good adhesion of the fibers to each other, even more significantly than surface melting, especially because of its ability to retain the high orientation of the chains in the fibers. This information is relevant for understanding the formation and microstructure of the matrix component in the self‐reinforced composites fabricated by compaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1535–1541, 2007
ISSN:0887-6266
1099-0488
DOI:10.1002/polb.21147