Loading…
Nitrogen removal from wastewater in a pilot plant operated in the recirculation anoxic-oxic activated sludge mode
The recirculation activated sludge process with preanoxic treatment was applied for biological reduction of the nitrogen content in municipal wastewater at pilot plant level. The pilot plant of total volume 3 300 1 with an initial anoxic to aerobic volume ratio of 40 : 60 was fed with wastewater fro...
Saved in:
Published in: | Water science and technology 1996, Vol.33 (12), p.255-258 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The recirculation activated sludge process with preanoxic treatment was applied for biological reduction of the nitrogen content in municipal wastewater at pilot plant level. The pilot plant of total volume 3 300 1 with an initial anoxic to aerobic volume ratio of 40 : 60 was fed with wastewater from the rust heavily loaded aerobic stage of a local wastewater treatment plant. Experiments were run over the summer and winter periods, the influent wastewater temperature being approx 24°C and approx 10°C, respectively. Special attention was paid to the hydraulic retention time, the total as well as mineral nitrogen loading, the aerobic to anaerobic volume ratio, and to the energy demand for denitrification of oxidised mineral nitrogen forms. Under optimal operating conditions the effluent quality that could be achieved was about 10 mg/l of total nitrogen (74% removal) and less than 2 mg NA mineral nitrogen (87% removal), while simultaneously 205 mg BOD5/l in the influent was reduced to less than 7mg O2/l in the effluent. It was found feasible from the pilot plant experiments to upgrade an existing two stage aerobic-anaerobic wastewater treatment plant to reduce nitrogen from the liquid fraction of municipal wastewater so as to meet effluent quality standards without much additional volume and without amending the energy source for bioconversion of oxidised mineral nitrogen to gaseous forms. |
---|---|
ISSN: | 0273-1223 1996-9732 |
DOI: | 10.1016/0273-1223(96)00481-7 |