Loading…

Forensic Fingerprinting of Oil-Spill Hydrocarbons in a Methanogenic Environment-Mandan, ND and Bemidji, MN

In recent decades forensic fingerprinting of oil-spill hydrocarbons has emerged as an important tool for correlating oils and for evaluating their source and character. Two long-term hydrocarbon spills, an off-road diesel spill (Mandan, ND) and a crude oil spill (Bemidji, MN) experiencing methanogen...

Full description

Saved in:
Bibliographic Details
Published in:Environmental forensics 2007-03, Vol.8 (1-2), p.139-153
Main Authors: Hostettler, Frances D., Wang, Yi, Huang, Yongsong, Cao, Weihuan, Bekins, Barbara A., Rostad, Colleen E., Kulpa, Charles F., Laursen, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent decades forensic fingerprinting of oil-spill hydrocarbons has emerged as an important tool for correlating oils and for evaluating their source and character. Two long-term hydrocarbon spills, an off-road diesel spill (Mandan, ND) and a crude oil spill (Bemidji, MN) experiencing methanogenic biodegradation were previously shown to be undergoing an unexpected progression of homologous n-alkane and n-alkylated cyclohexane loss. Both exhibited degradative losses proceeding from the high-molecular-weight end of the distributions, along with transitory concentration increases of lower-molecular-weight homologs. Particularly in the case of the diesel fuel spill, these methanogenic degradative patterns can result in series distributions that mimic lower cut refinery fuels or admixture with lower cut fuels. Forensic fingerprinting in this long-term spill must therefore rely on more recalcitrant series, such as polycyclic aromatic hydrocarbon or drimane sesquiterpane profiles, to prove if the spilled oil is single-sourced or whether there is verifiable admixture with other extraneous refinery fuels. Degradation processes impacting n-alkanes and n-alkylated ring compounds, which make these compounds unsuitable for fingerprinting, nevertheless are of interest in understanding methanogenic biodegradation.
ISSN:1527-5922
1527-5930
DOI:10.1080/15275920601180685