Loading…
Discrete calculus methods for diffusion
A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the abil...
Saved in:
Published in: | Journal of computational physics 2007-05, Vol.224 (1), p.59-81 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763 |
---|---|
cites | cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763 |
container_end_page | 81 |
container_issue | 1 |
container_start_page | 59 |
container_title | Journal of computational physics |
container_volume | 224 |
creator | Perot, J.B. Subramanian, V. |
description | A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases. |
doi_str_mv | 10.1016/j.jcp.2006.12.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29807448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106006127</els_id><sourcerecordid>29807448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyAFPCnRMntphQ-ZQqscBsOf4QjtKk2AkS_x5XrcTGdMvzvnf3EHKJUCBgfdsVnd4WFKAukBZA6RFZIAjIaYP1MVkAUMyFEHhKzmLsAICzii_IzYOPOtjJZlr1eu7nmG3s9DmamLkxZMY7N0c_DufkxKk-2ovDXJKPp8f31Uu-fnt-Xd2vc10yPuVoKHPaWWZaUaLSlTYOG-MEa60oGSqosIZWixIEV7qkiXO2Yq1WtWNNXS7J9b53G8av2cZJbtKBtu_VYMc5Sio4NFXFE4h7UIcxxmCd3Aa_UeFHIsidEtnJpETulEikMilJmatDuYrpXRfUoH38C_KGN6JhibvbczZ9-u1tkFF7O2hrfLB6kmb0_2z5BTG0dho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29807448</pqid></control><display><type>article</type><title>Discrete calculus methods for diffusion</title><source>ScienceDirect Freedom Collection</source><creator>Perot, J.B. ; Subramanian, V.</creator><creatorcontrib>Perot, J.B. ; Subramanian, V.</creatorcontrib><description>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.12.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Discrete calculus ; Exact sciences and technology ; Face/edge elements ; Finite element ; Finite volume ; Mathematical methods in physics ; Physics ; Staggered mesh ; Unstructured</subject><ispartof>Journal of computational physics, 2007-05, Vol.224 (1), p.59-81</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</citedby><cites>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18787975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perot, J.B.</creatorcontrib><creatorcontrib>Subramanian, V.</creatorcontrib><title>Discrete calculus methods for diffusion</title><title>Journal of computational physics</title><description>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</description><subject>Computational techniques</subject><subject>Discrete calculus</subject><subject>Exact sciences and technology</subject><subject>Face/edge elements</subject><subject>Finite element</subject><subject>Finite volume</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Staggered mesh</subject><subject>Unstructured</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyAFPCnRMntphQ-ZQqscBsOf4QjtKk2AkS_x5XrcTGdMvzvnf3EHKJUCBgfdsVnd4WFKAukBZA6RFZIAjIaYP1MVkAUMyFEHhKzmLsAICzii_IzYOPOtjJZlr1eu7nmG3s9DmamLkxZMY7N0c_DufkxKk-2ovDXJKPp8f31Uu-fnt-Xd2vc10yPuVoKHPaWWZaUaLSlTYOG-MEa60oGSqosIZWixIEV7qkiXO2Yq1WtWNNXS7J9b53G8av2cZJbtKBtu_VYMc5Sio4NFXFE4h7UIcxxmCd3Aa_UeFHIsidEtnJpETulEikMilJmatDuYrpXRfUoH38C_KGN6JhibvbczZ9-u1tkFF7O2hrfLB6kmb0_2z5BTG0dho</recordid><startdate>20070520</startdate><enddate>20070520</enddate><creator>Perot, J.B.</creator><creator>Subramanian, V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070520</creationdate><title>Discrete calculus methods for diffusion</title><author>Perot, J.B. ; Subramanian, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Discrete calculus</topic><topic>Exact sciences and technology</topic><topic>Face/edge elements</topic><topic>Finite element</topic><topic>Finite volume</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Staggered mesh</topic><topic>Unstructured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perot, J.B.</creatorcontrib><creatorcontrib>Subramanian, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perot, J.B.</au><au>Subramanian, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete calculus methods for diffusion</atitle><jtitle>Journal of computational physics</jtitle><date>2007-05-20</date><risdate>2007</risdate><volume>224</volume><issue>1</issue><spage>59</spage><epage>81</epage><pages>59-81</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.12.022</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2007-05, Vol.224 (1), p.59-81 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_proquest_miscellaneous_29807448 |
source | ScienceDirect Freedom Collection |
subjects | Computational techniques Discrete calculus Exact sciences and technology Face/edge elements Finite element Finite volume Mathematical methods in physics Physics Staggered mesh Unstructured |
title | Discrete calculus methods for diffusion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20calculus%20methods%20for%20diffusion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Perot,%20J.B.&rft.date=2007-05-20&rft.volume=224&rft.issue=1&rft.spage=59&rft.epage=81&rft.pages=59-81&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.12.022&rft_dat=%3Cproquest_cross%3E29807448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29807448&rft_id=info:pmid/&rfr_iscdi=true |