Loading…

Discrete calculus methods for diffusion

A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the abil...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics 2007-05, Vol.224 (1), p.59-81
Main Authors: Perot, J.B., Subramanian, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763
cites cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763
container_end_page 81
container_issue 1
container_start_page 59
container_title Journal of computational physics
container_volume 224
creator Perot, J.B.
Subramanian, V.
description A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.
doi_str_mv 10.1016/j.jcp.2006.12.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29807448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999106006127</els_id><sourcerecordid>29807448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iyAFPCnRMntphQ-ZQqscBsOf4QjtKk2AkS_x5XrcTGdMvzvnf3EHKJUCBgfdsVnd4WFKAukBZA6RFZIAjIaYP1MVkAUMyFEHhKzmLsAICzii_IzYOPOtjJZlr1eu7nmG3s9DmamLkxZMY7N0c_DufkxKk-2ovDXJKPp8f31Uu-fnt-Xd2vc10yPuVoKHPaWWZaUaLSlTYOG-MEa60oGSqosIZWixIEV7qkiXO2Yq1WtWNNXS7J9b53G8av2cZJbtKBtu_VYMc5Sio4NFXFE4h7UIcxxmCd3Aa_UeFHIsidEtnJpETulEikMilJmatDuYrpXRfUoH38C_KGN6JhibvbczZ9-u1tkFF7O2hrfLB6kmb0_2z5BTG0dho</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29807448</pqid></control><display><type>article</type><title>Discrete calculus methods for diffusion</title><source>ScienceDirect Freedom Collection</source><creator>Perot, J.B. ; Subramanian, V.</creator><creatorcontrib>Perot, J.B. ; Subramanian, V.</creatorcontrib><description>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2006.12.022</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Computational techniques ; Discrete calculus ; Exact sciences and technology ; Face/edge elements ; Finite element ; Finite volume ; Mathematical methods in physics ; Physics ; Staggered mesh ; Unstructured</subject><ispartof>Journal of computational physics, 2007-05, Vol.224 (1), p.59-81</ispartof><rights>2006 Elsevier Inc.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</citedby><cites>FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18787975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Perot, J.B.</creatorcontrib><creatorcontrib>Subramanian, V.</creatorcontrib><title>Discrete calculus methods for diffusion</title><title>Journal of computational physics</title><description>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</description><subject>Computational techniques</subject><subject>Discrete calculus</subject><subject>Exact sciences and technology</subject><subject>Face/edge elements</subject><subject>Finite element</subject><subject>Finite volume</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><subject>Staggered mesh</subject><subject>Unstructured</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iyAFPCnRMntphQ-ZQqscBsOf4QjtKk2AkS_x5XrcTGdMvzvnf3EHKJUCBgfdsVnd4WFKAukBZA6RFZIAjIaYP1MVkAUMyFEHhKzmLsAICzii_IzYOPOtjJZlr1eu7nmG3s9DmamLkxZMY7N0c_DufkxKk-2ovDXJKPp8f31Uu-fnt-Xd2vc10yPuVoKHPaWWZaUaLSlTYOG-MEa60oGSqosIZWixIEV7qkiXO2Yq1WtWNNXS7J9b53G8av2cZJbtKBtu_VYMc5Sio4NFXFE4h7UIcxxmCd3Aa_UeFHIsidEtnJpETulEikMilJmatDuYrpXRfUoH38C_KGN6JhibvbczZ9-u1tkFF7O2hrfLB6kmb0_2z5BTG0dho</recordid><startdate>20070520</startdate><enddate>20070520</enddate><creator>Perot, J.B.</creator><creator>Subramanian, V.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070520</creationdate><title>Discrete calculus methods for diffusion</title><author>Perot, J.B. ; Subramanian, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Computational techniques</topic><topic>Discrete calculus</topic><topic>Exact sciences and technology</topic><topic>Face/edge elements</topic><topic>Finite element</topic><topic>Finite volume</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><topic>Staggered mesh</topic><topic>Unstructured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perot, J.B.</creatorcontrib><creatorcontrib>Subramanian, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perot, J.B.</au><au>Subramanian, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete calculus methods for diffusion</atitle><jtitle>Journal of computational physics</jtitle><date>2007-05-20</date><risdate>2007</risdate><volume>224</volume><issue>1</issue><spage>59</spage><epage>81</epage><pages>59-81</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>A general methodology for the solution of partial differential equations is described in which the discretization of the calculus is exact and all approximation occurs as an interpolation problem on the material constitutive equations. The fact that the calculus is exact gives these methods the ability to capture the physics of PDE systems well. The construction of both node and cell based methods of first and second-order are described for the problem of unsteady heat conduction – though the method is applicable to any PDE system. The performance of these new methods are compared to classic solution methods on unstructured 2D and 3D meshes for a variety of simple and complex test cases.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2006.12.022</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2007-05, Vol.224 (1), p.59-81
issn 0021-9991
1090-2716
language eng
recordid cdi_proquest_miscellaneous_29807448
source ScienceDirect Freedom Collection
subjects Computational techniques
Discrete calculus
Exact sciences and technology
Face/edge elements
Finite element
Finite volume
Mathematical methods in physics
Physics
Staggered mesh
Unstructured
title Discrete calculus methods for diffusion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete%20calculus%20methods%20for%20diffusion&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Perot,%20J.B.&rft.date=2007-05-20&rft.volume=224&rft.issue=1&rft.spage=59&rft.epage=81&rft.pages=59-81&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2006.12.022&rft_dat=%3Cproquest_cross%3E29807448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-1d25fcfe5db931ac4cdf17df95be9351a04160bc93098ac32db9fe45bca6f5763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29807448&rft_id=info:pmid/&rfr_iscdi=true